【題目】ABC中,∠BCA=90°,CD是邊AB上的中線,分別過點C,D作BA,BC的平行線交于點E,且DE交AC于點O,連接AE.

(1)求證:四邊形ADCE是菱形;

(2)若AC=2DE,求sin∠CDB的值.

【答案】(1)見解析;(2).

【解析】試題分析:(1)由DE∥BC,CE∥AB,可得四邊形DBCE是平行四邊形,又由△ABC中,∠BCA=90°,CD是邊AB上的中線,根據(jù)直角三角形斜邊的中線等于斜邊的一半,可得CD=AD=BD=CE,然后由CE∥AB,證得四邊形ADCE是平行四邊形,繼而證得四邊形ADCE是菱形;

(2)首先過點C作CF⊥AB于點F,由(1)可知,BC=DE,設BC=x,則AC=2x,然后由勾股定理求得AB,再由三角形的面積,求得CF的長,由勾股定理即可求得CD的長,繼而求得答案.

試題解析:(1)∵DE∥BC,CE∥AB,

∴四邊形DBCE是平行四邊形,

∴CE=BD,

∵CD是AB邊上的中線,

∴BD=AD,∴EC=DA,

∴四邊形ADCE是平行四邊形,

∵∠BCA=90°,CD是斜邊AB上的中線,

∴AD=CD,

∴平行四邊形ADCE是菱形;

(2)過點C作CF⊥AB于點F,

由(1)可知,BC=DE,

設BC=x,則AC=2x,

在Rt△ABC中,

,

,

,

.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(本題8分)如圖某幢大樓頂部有廣告牌CD.張老師目高MA為1.60米,他站立在離大樓45米的A處測得大樓頂端點D的仰角為30°;接著他向大樓前進14米、站在點B處,測得廣告牌頂端點C的仰角為45°.(取 ,計算結(jié)果保留一位小數(shù))

(1)求這幢大樓的高DH;

(2)求這塊廣告牌CD的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用四舍五入法得到的近似數(shù) 1.038 萬,則在下列說法中,正確的是(

A.它精確到十位B.它精確到千位C.它精確到萬位D.它精確到 0.001

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】6年前,甲的年齡是乙的3倍,現(xiàn)在甲的年齡是乙的2倍,甲現(xiàn)在_________歲,乙現(xiàn)在________歲.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)軸上與表示-3的點相距5個單位長度的點所表示的數(shù)是_________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電信公司手機有兩類收費標準,A類收費標準如下:不管通話時間多長,少,每部手機每月必須繳月租費12元,另外,通話費按0.2元/min計。B類收費標準如下:沒有月租費,但通話費按0.25元/min計。

(1)分別寫出A、B兩類每月應繳費用y(元)與通話時間xmin)之間的關系式;

(2)如果手機用戶預算每月交55元的話費,那么該用戶選擇哪類收費方式合算?

(3)每月通話多長時間,按A、B兩類收費標準繳費,所繳話費相等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知平分 , ,且

)求證:

)若 , ,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對稱軸是直線x=1.

b2>4ac; 4a-2b+c<0; ③不等式ax2+bx+c>0的解集是x≥3.5; ④若(-2,y1),(5,y2)是拋物線上的兩點,則y1y2

上述4個判斷中,正確的是( 。

A. ①② B. ①④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明同學去某批零兼營的文具店,為學校美術小組的30名同學購買鉛筆和橡皮.若給全組每人各買2支鉛筆和1塊橡皮,那么需按零售價購買,共支付30元;若給全組每人各買3支鉛筆和2塊橡皮,那么可按批發(fā)價購買,共支付40.5元.已知1支鉛筆的批發(fā)價比零售價低0.05元,1塊橡皮的批發(fā)價比零售價低0.10元.請解決下列問題(均需寫出解題過程):

(1)問這家文具店每支鉛筆和每塊橡皮的批發(fā)價各是多少元?

(2)小亮同學用4元錢在這家文具店按零售價買同樣的鉛筆和橡皮(兩樣都要買,4元錢恰好用完),有哪幾種購買方案?

查看答案和解析>>

同步練習冊答案