【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A、B兩點,與y軸交于點C,已知點A(﹣1,0),點C(0,2)

(1)求拋物線的函數(shù)解析式;

(2)若D是拋物線位于第一象限上的動點,求△BCD面積的最大值及此時點D的坐標.

【答案】(1) 拋物線的函數(shù)解析式為y=﹣x2+x+2;(2)4;D(2,3).

【解析】

(1)把A與C坐標代入拋物線解析式求出b與c的值,確定出解析式即可;

(2)連接OD,設出D坐標,四邊形OCDB的面積等于三角形OCD面積+三角形OBD面積,表示出三角形BCD面積S與m的二次函數(shù)解析式,求出最大面積及D坐標即可.

(1)將點A(﹣1,0),點C(0,2)縱、橫坐標分別代入y=﹣x2+bx+c得:

,

解得:

則拋物線的函數(shù)解析式為y=﹣x2+x+2;

(2)連接OD,則有B(4,0),設D(m,﹣m2+m+2),

∵S四邊形OCDB﹣S△OCD﹣S△OBD=×2m+×4(﹣m2+m+2)=﹣m2+4m+4,

∴S△BCD=S四邊形OCDB﹣S△OBC=﹣m2+4m+4﹣×4×2=﹣m2+4m=﹣(m﹣2)2+4,

當m=2時,S△BCD取得最大值4,

此時yD=﹣×4+×2+2=3,即D(2,3).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】出租車司機小李某天上午營運時是在東西走向的大街上進行的,如果規(guī)定向東為正,向西為負,他這天上午所接六位乘客的行車里程(單位:)如下:

,,,,,

問:(1)將最后一位乘客送到目的地時,小李在什么位置?

2)若汽車耗油量為(升/千米),這天上午小李接送乘客,出租車共耗油多少升?

3)若出租車起步價為8元,起步里程為(包括),超過部分每千米1.2元,問小李這天上午共得車費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年暑假,小麗爸爸的同事送給她爸爸一張北京故宮的門票,她和哥哥兩人都很想去參觀,可門票只有一張.讀九年級的哥哥想了一個辦法,他拿了八張撲克牌,將數(shù)字為1,2,3,5的四張牌給小麗,將數(shù)字為4,6,7,8的四張牌留給自己,并按如下游戲規(guī)則進行:小利哥哥從各自的四張牌中隨機抽出一張,然后將抽出的兩張撲克牌上的數(shù)字相加,如果和為偶數(shù),和小麗去;如果和為奇數(shù),則哥哥去.

(1)請用畫樹狀圖或列表的方法求小麗去北京故宮參觀的概率;

(2)哥哥設計的游戲規(guī)則公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知矩形OACB的邊OA,OB分別在x軸上和y軸上,線段OA=24,OB=12;點P從點O開始沿OA邊勻速移動,點M從點B開始沿BO邊勻速移動.如果點P,點M同時出發(fā),它們移動的速度相同都是1個單位/秒,設經(jīng)過x秒時(0≤x≤12),△POM的面積為y.

(1)求直線AB的解析式;

(2)求y與x的函數(shù)關(guān)系式;

(3)連接矩形的對角線AB,當x為何值時,以M、O、P為頂點的三角形等于AOB面積的

(4)當POM的面積最大時,將POM沿PM所在直線翻折后得到PDM,試判斷D點是否在直線AB上,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一條拋物線的對稱軸是直線x=1;它與x軸相交于A,B兩點(點A在點B的左邊),且線段AB的長是4;它還與過點C(1,﹣2)的直線有一個交點是D(2,﹣3).

(1)求這條直線的函數(shù)解析式;

(2)求這條拋物線的函數(shù)解析式;

(3)若這條直線上有P點,使SPAB=12,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x(x-2)=x-2①與一元一次方程2x+1=2a-x②.

(1)若方程①的一個根是方程②的根,求a的值;

(2)若方程②的根不小于方程①兩根中的較小根且不大于方程①兩根中的較大根,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場為了吸引顧客,設計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有0、102030的字樣.規(guī)定:顧客在本商場同一日內(nèi),每消費滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據(jù)兩小球所標金額的和返還相應價格的購物券,可以重新在本商場消費,某顧客剛好消費200元.

1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;

2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小蟲從某點點處出發(fā)在一直線上來回爬行,假定向右爬行的路程記為正數(shù),左爬行的路程為負數(shù),爬行的路程依次為(單位:厘米):+5,-3,+10-8,-6,+12-11

1)小蟲最后是否回到出發(fā)點點?如果不在,請說出小蟲的位置;

2)小蟲離開出發(fā)點點最遠時是 厘米;

3)在爬行過程中,如果每爬1厘米獎勵兩粒芝麻,則小蟲共得多少粒芝麻?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角三角形ABC中,∠ABC=90°,DAC邊中點,過D點作DEDF,交ABE,交BCF,連接BD.

(1)求證:△CDF≌△BED

(2)AE=4,FC=3,求AB

查看答案和解析>>

同步練習冊答案