【題目】如圖,矩形OABC的頂點A、C分別在x、y軸的正半軸上,點D為對角線OB的中點,點E(4,n)在邊AB上,反比例函數(shù)(k≠0)在第一象限內(nèi)的圖象經(jīng)過點D、E,且tan∠BOA=.
(1)求邊AB的長;
(2)求反比例函數(shù)的解析式和n的值;
(3)若反比例函數(shù)的圖象與矩形的邊BC交于點F,將矩形折疊,使點O與點F重合,折痕分別與x、y軸正半軸交于點H、G,求線段OG的長.
【答案】(1)2;(2)反比例函數(shù)解析式為y=,n=;(3).
【解析】
試題分析:(1)根據(jù)點E的縱坐標判斷出OA=4,再根據(jù)tan∠BOA=即可求出AB的長度;
(2)根據(jù)(1)求出點B的坐標,再根據(jù)點D是OB的中點求出點D的坐標,然后利用待定系數(shù)法求函數(shù)解析式求出反比例函數(shù)解析式,再把點E的坐標代入進行計算即可求出n的值;
(3)先利用反比例函數(shù)解析式求出點F的坐標,從而得到CF的長度,連接FG,根據(jù)折疊的性質(zhì)可得FG=OG,然后用OG表示出CG的長度,再利用勾股定理列式計算即可求出OG的長度.
試題解析:(1)∵點E(4,n)在邊AB上,
∴OA=4,
在Rt△AOB中,∵tan∠BOA=,
∴AB=OA×tan∠BOA=4×=2;
(2)根據(jù)(1),可得點B的坐標為(4,2),
∵點D為OB的中點,
∴點D(2,1)
∴=1,
解得k=2,
∴反比例函數(shù)解析式為y=,
又∵點E(4,n)在反比例函數(shù)圖象上,
∴=n,
解得n=;
(3)如圖,設點F(a,2),
∵反比例函數(shù)的圖象與矩形的邊BC交于點F,
∴=2,
解得a=1,
∴CF=1,
連接FG,設OG=t,則OG=FG=t,CG=2-t,
在Rt△CGF中,GF2=CF2+CG2,
即t2=(2-t)2+12,
解得t=,
∴OG=t=.
科目:初中數(shù)學 來源: 題型:
【題目】一次普法知識競賽共有30道題,規(guī)定答對一道題得4分,答錯或不答,一道題得-1分,在這次競賽中,小明獲得優(yōu)秀(90或90分以上),則小明至少答對了 道題.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑作⊙O交AB于點D,連接CD.
(1)求證:∠A=∠BCD;
(2)若M為線段BC上一點,試問當點M在什么位置時,直線DM與⊙O相切?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=2(x﹣3)2+1,下列說法:
①其圖象的開口向下;
②其圖象的對稱軸為直線x=﹣3;
③其圖象頂點坐標為(3,﹣1);
④當x<3時,y的值隨x值的增大而減。
則其中說法正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某城市體育中考項目分為必測項目和選測項目,必測項目為:跳繩、立定跳遠;選測項目為50米、實心球、踢毽子三項中任選一項.
(1)每位考生將有 種選擇方案;
(2)用畫樹狀圖或列表的方法求小穎和小華將選擇同種方案的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學課上,探討角平分線的作法時,李老師用直尺和圓規(guī)作角平分線,方法如下:
小穎的身邊只有刻度尺,經(jīng)過嘗試,她發(fā)現(xiàn)利用刻度尺也可以作角平分線.
根據(jù)以上情境,解決下列問題:
(1)李老師用尺規(guī)作角平分線時,用到的三角形全等的判定方法是_________.
(2)小聰?shù)淖鞣ㄕ_嗎?請說明理由.
(3)請你幫小穎設計用刻度尺作角平分線的方法.(要求:作出圖形,寫出作圖步驟,不予證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于函數(shù)y=x2,下列說法不正確的是( )
A. 當x<0時,y隨x增大而減小 B. 當x≠0時,函數(shù)值總是正的
C. 當x>0時,y隨x增大而增大 D. 函數(shù)圖象有最高點
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2017年4月20日晚,中國首艘貨運飛船天舟一號順利發(fā)射升空。其在太空飛行速度是子彈飛行速度8倍,已知子彈的速度約為每秒300米,那么天舟一號的飛行速度用科學記數(shù)法(精確到千位)表示為( 。├迕/秒.
A. 2.40×106 B. 2.4×105 C. 2.40×105 D. 2.4×103
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com