【題目】如圖,AB為⊙O的直徑,PD切⊙O于點(diǎn)C,交AB的延長線于點(diǎn)D,且∠D=2∠CAD.
(1)求∠D的度數(shù);
(2)若CD=2,求BD的長.
【答案】(1)45°;(2).
【解析】
試題(1)根據(jù)等腰三角形性質(zhì)和三角形外角性質(zhì)求出∠COD=2∠A,求出∠D=∠COD,根據(jù)切線性質(zhì)求出∠OCD=90°,即可求出答案;
(2)求出OC=CD=2,根據(jù)勾股定理求出BD即可.
試題解析:(1)∵OA=OC,
∴∠A=∠ACO,
∴∠COD=∠A+∠ACO=2∠A,
∵∠D=2∠A,
∴∠D=∠COD,
∵PD切⊙O于C,
∴∠OCD=90°,
∴∠D=∠COD=45°;
(2)∵∠D=∠COD,CD=2,
∴OC=OB=CD=2,
在Rt△OCD中,由勾股定理得:22+22=(2+BD)2,
解得:BD=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們在探究一元二次方程根與系數(shù)的關(guān)系中發(fā)現(xiàn):如果關(guān)于x的方程x2+px+q=0的兩個(gè)根是x1,x2,那么由求根公式可推出x1+x2=﹣p,x1x2=q,請根據(jù)這一結(jié)論,解決下列問題:
(1)若α,p是方程x2﹣3x+1=0的兩根,則α+β= ,αβ= ;若2,3是方程x2+mx+n=0的兩根,則m= ,n= ;
(2)已知a,b滿足a2﹣5a+3=0,b2﹣5b+3=0,求的值;
(3)已知a,b,c滿足a+b+c=0,abc=5,求正整數(shù)c的最小值,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國貿(mào)商店服裝柜在銷售中發(fā)現(xiàn):“寶樂牌”童裝平均每天可以售出20件,每件盈利40元.為了迎接“六一”兒童節(jié),商場決定采取適當(dāng)?shù)慕祪r(jià)措施,擴(kuò)大銷售量,增加盈利,盡快減少庫存.經(jīng)調(diào)查發(fā)現(xiàn):每件童裝每降價(jià)1元,商場平均每天可多銷售2件.
(1)若每件童裝降價(jià)5元,則商場盈利多少元?
(2)若商場每天要想盈利1200元,請你幫助商場算一算,每件童裝應(yīng)降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,點(diǎn)H,E,F分別在邊AB,BC,CD上,AE⊥HF于點(diǎn)G.
(1)如圖1,求證:AE=HF;
(2)如圖2,延長FH,交CB的延長線于M,連接AC,交HF于N.若MB=BE,EC=2BE,求的值;
(3)如圖3,若AB=2,BH=DF,將線段HF繞點(diǎn)F順時(shí)針旋轉(zhuǎn)90°至線段MF,連接AM,則線段AM的最小值為 .(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在長方形中,=,=,點(diǎn)從點(diǎn)開始沿邊向終點(diǎn)以的速度移動,與此同時(shí),點(diǎn)從點(diǎn)開始沿邊向終點(diǎn)以的速度移動.如果、分別從、同時(shí)出發(fā),當(dāng)點(diǎn)運(yùn)動到點(diǎn)時(shí),兩點(diǎn)停止運(yùn)動.設(shè)運(yùn)動時(shí)間為秒.
(1)填空:______=______,______=______(用含t的代數(shù)式表示);
(2)當(dāng)為何值時(shí),的長度等于?
(3)是否存在
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長是5,點(diǎn)O在AD上,且⊙O的直徑是4.
(1)正方形的對角線BD與半圓O交于點(diǎn)F,求陰影部分的面積;
(2)利用圖判斷,半圓O與AC有沒有公共點(diǎn),說明理由.(提示:≈1.41)
(3)將半圓O以點(diǎn)E為中心,順時(shí)針方向旋轉(zhuǎn).
①旋轉(zhuǎn)過程中,△BOC的最小面積是 ;
②當(dāng)半圓O過點(diǎn)A時(shí),半圓O位于正方形以外部分的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列材料,然后解答問題.
材料:從三角形不是等腰三角形一個(gè)頂點(diǎn)引出一條射線與對邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線段叫做這個(gè)三角形的完美分割線.
例如:如圖,AD把分成與,若是等腰三角形,且∽,那么AD就是的完美分割線.
解答下列問題:
如圖,在中,若∠B=40°,AD是的完美分割線,且是以AD為底邊的等腰三角形,則____度;
在中,若,,AD是的完美分割線,是等腰三角形,則____;
如圖,在中,AD平分,求證AD是的完美分割線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2k-1)x+k2=0有兩個(gè)實(shí)根x1和x2
(1) 求實(shí)數(shù)k的取值范圍
(2) 若方程兩實(shí)根x1、x2滿足x12-x22=0,求k的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是等邊三角形ABC內(nèi)一點(diǎn),且PA=3,PB=4, PC=5,若將△APB繞著點(diǎn)B逆時(shí)針旋轉(zhuǎn)后得到△CQB,則∠APB的度數(shù)______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com