【題目】在正方形ABCD中,點(diǎn)H,EF分別在邊AB,BC,CD上,AEHF于點(diǎn)G

1)如圖1,求證:AEHF

2)如圖2,延長(zhǎng)FH,交CB的延長(zhǎng)線于M,連接AC,交HFN.若MBBE,EC2BE,求的值;

3)如圖3,若AB2BHDF,將線段HF繞點(diǎn)F順時(shí)針旋轉(zhuǎn)90°至線段MF,連接AM,則線段AM的最小值為   .(直接寫(xiě)出結(jié)果)

【答案】1)見(jiàn)解析;(22;(3AM的最小值為

【解析】

1)如圖1中,作HMCDM.證明ABE≌△HMFASA),即可推出AEHF

2)不妨設(shè)BEBMa,EC2a,則ABBCCD3a,CM4a,推出tan∠BAE,證明MBAE,推出tan,可得BHa,CFa,推出AHABBH3aaa,再利用相似三角形的性質(zhì)即可解決問(wèn)題.

3)如圖3中,延長(zhǎng)BAN,使得ANAD,作MJANJ,交CD的延長(zhǎng)線于K,作FQABQ,則四邊形BCFQ,四邊形ADKJ都是矩形,FQH≌△FKMAAS).想辦法證明tan∠N2,推出點(diǎn)M的運(yùn)動(dòng)軌跡是射線NMN是的定值,作APMNP,根據(jù)垂線段最短可知:當(dāng)AMAP重合時(shí),AM的值最小.

1)證明:如圖1中,作HMCDM

四邊形ABC都是正方形,

∴∠BCCMH90°,ABBC,

四邊形BCMH是矩形,

HMBCAB,

AEHF

∴∠AGHAHM90°,

∴∠BAE+∠AHG90°,AHG+∠FHM90°,

∴∠BAEFHM,∵∠BHMF90°,

∴△ABE≌△HMFASA),

AEHF

2)解:如圖2中,

EC2BE,不妨設(shè)BEBMa,EC2a,則ABBCCD3a,CM4a

∴tan∠BAE,

ABEMGE90°,

∴∠BAE+∠AEB90°,M+∠AEB90°,

∴∠MBAE,

∴tan

BHaCFa,

AHABBH3aaa

CFAH,

∴△ANH∽△CNF

2

3)解:如圖3中,延長(zhǎng)BAN,使得ANAD,作MJANJ,交CD的延長(zhǎng)線于K,作FQABQ,則四邊形BCFQ,四邊形ADKJ都是矩形,

QFH+QFM=KFM+QFM

QFH=KFM

FQH =FKM =90°,HF=MF

∴△FQH≌△FKMAAS).

QKKMDFAQBH,

KJADAB

JMAQ+BH2AQ,

FKFQJQADAN

AQJN,

JM2JN

∴tan∠N2,

點(diǎn)M的運(yùn)動(dòng)軌跡是射線NM,N是的定值,作APMNP,

根據(jù)垂線段最短可知:當(dāng)AMAP重合時(shí),AM的值最小,

∵tan∠N2,設(shè)NPx,AP2x,

Rt△APN中,則有22x2+4x2

解得x(負(fù)根已經(jīng)舍棄),

PA2x,

AM的最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,ABC直角三角形,延長(zhǎng)ABD,使BD=BC,在BC上取BE=AB,連接DEABC順時(shí)針旋轉(zhuǎn)后能與EBD重合,那么:

1)旋轉(zhuǎn)中心是哪一點(diǎn)?旋轉(zhuǎn)角是多少度?

2ACDE的關(guān)系怎樣?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=x2+bx+cx軸交于A﹣1,0)和B3,0)兩點(diǎn),交y軸于點(diǎn)E

1)求此拋物線的解析式.

2)若直線y=x+1與拋物線交于AD兩點(diǎn),與y軸交于點(diǎn)F,連接DE,求△DEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)二次函數(shù)圖象上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如表所示:

x

2

1

0

1

2

3

4

y

0

p

m

3

q

0

1)求這個(gè)二次函數(shù)的表達(dá)式;

2)表格中字母m  ;(直接寫(xiě)出答案)

3)在給定的直角坐標(biāo)系中,畫(huà)出這個(gè)二次函數(shù)的圖象;

4)以上二次函數(shù)的圖象與x軸圍成的封閉區(qū)域內(nèi)(不包括邊界),橫、縱坐標(biāo)都是整數(shù)的點(diǎn)共有  個(gè).(直接寫(xiě)出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至正方形AB'C'D',邊B'C'CD于點(diǎn)E.若正方形ABCD的邊長(zhǎng)為3,則DE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:二次函數(shù) 中的滿足下表:

0

1

2

3

3

0

0

m

(1) 觀察上表可求得的值為________

(2) 試求出這個(gè)二次函數(shù)的解析式;

(3) 若點(diǎn)An+2,y1),Bny2)在該拋物線上,且y1>y2,請(qǐng)直接寫(xiě)出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,PD⊙O于點(diǎn)C,交AB的延長(zhǎng)線于點(diǎn)D,且∠D=2∠CAD

1)求∠D的度數(shù);

2)若CD=2,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn), AD與過(guò)點(diǎn)C的直線互相垂直,垂足為點(diǎn)D,AD交⊙O于點(diǎn)EAC平分∠DAB,連接CE,CB

1)求證:CD是⊙O的切線;

2)若ACCE,求⊙O的半徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形、等腰的頂點(diǎn)在對(duì)角線(點(diǎn)不重合),交于延長(zhǎng)線與交于點(diǎn),連接.

(1)求證:.

(2)求證:

(3),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案