【題目】 閱讀下面的例題: 解方程:
解:當(dāng)x≥0時(shí),原方程化為x2-x-2=0,解得:x1=2,x2=-1(不合題意,舍去);
當(dāng)x<0時(shí),原方程化為x2+ x-2=0,解得:x1=1,(不合題意,舍去)x2=-2;
∴原方程的根是x1=2,x2=-2.
請(qǐng)參照例題解方程:x2-|x-3|-3=0
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代有一道著名的算術(shù)題,原文為:吾問開店李三公,眾客都來到店中,一房七客多七客,一房九客一房空,問幾房幾客?意為:一批客人來到李三的旅店住宿,如果每個(gè)房間住7人,那么有7位客人沒房。蝗绻總(gè)房間住9人,那么有1間空房,問共有多少位客人?多少間房?請(qǐng)你用初中數(shù)學(xué)知識(shí)方法求出上述問題的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作與證明:如圖1,把一個(gè)含45°角的直角三角板ECF和一個(gè)正方形ABCD擺放在一起,使三角板的直角頂點(diǎn)和正方形的頂點(diǎn)C重合,點(diǎn)E、F分別在正方形的邊CB、CD上,連接AF.取AF中點(diǎn)M,EF的中點(diǎn)N,連接MD、MN.
(1)連接AE,求證:△AEF是等腰三角形;
猜想與發(fā)現(xiàn):
(2)在(1)的條件下,請(qǐng)判斷MD、MN的數(shù)量關(guān)系和位置關(guān)系,得出結(jié)論.
結(jié)論1:DM、MN的數(shù)量關(guān)系是 ;
結(jié)論2:DM、MN的位置關(guān)系是 ;
拓展與探究:
(3)如圖2,將圖1中的直角三角板ECF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°,其他條件不變,則(2)中的兩個(gè)結(jié)論還成立嗎?若成立,請(qǐng)加以證明;若不成立,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)多邊形的每一個(gè)內(nèi)角都是108°,那么這個(gè)多邊形是( )
A. 四邊形 B. 五邊形 C. 六邊形 D. 七邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)如圖,某農(nóng)場(chǎng)老板準(zhǔn)備建造一個(gè)矩形羊圈ABCD,他打算讓矩形羊圈的一面完全靠著墻MN,墻MN可利用的長(zhǎng)度為25m,另外三面用長(zhǎng)度為50m的籬笆圍成(籬笆正好要全部用完,且不考慮接頭的部分).
(1)若要使矩形羊圈的面積為300m2,則垂直于墻的一邊長(zhǎng)AB為多少米?
(2)農(nóng)場(chǎng)老板又想將羊圈ABCD的面積重新建造成面積為320m2,從而可以養(yǎng)更多的羊,請(qǐng)你告訴他:他的這個(gè)想法能實(shí)現(xiàn)嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩同學(xué)騎自行車從A地沿同一條路到B地,已知乙比甲先出發(fā),他們的騎行路程s(km)和騎行時(shí)間t(h)之間的函數(shù)關(guān)系如圖所示,給出下列說法:(1)他們都騎了20km;(2)乙在途中停留了0.5h;(3)甲、乙兩人同時(shí)到達(dá)目的地;(4)相遇后,甲的速度小于乙的速度.根據(jù)圖象信息,以上說法中正確的有( ).
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面的說法中,正確的個(gè)數(shù)是( )
①若a+b=0,則|a|=|b|
②若|a|=a,則a>0
③若|a|=|b|,則a=b
④若a為有理數(shù),則|a|=|﹣a|
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com