【題目】已知,如圖:AB為⊙O直徑,D為弧AC中點(diǎn),DE⊥AB于E,AC交OD于點(diǎn)F,

(1)求證:OD∥BC;

(2)若AB=10cm,BC=6cm,求DF的長;

(3)探索DE與AC的數(shù)量關(guān)系,直接寫出結(jié)論不用證明.

【答案】(1)證明見解析(2)2cm(3)DE=AC

【解析】

1)根據(jù)圓周角定理,由AB為直徑得到∠ACB=90°,再根據(jù)垂徑定理,由D為弧AC中點(diǎn)得到ODAC,則∠AFO=90°,于是根據(jù)平行線的判定方法即可得到ODBC

2)先判斷OF為△ACB的中位線,則OF=BC=3cm,然后利用DF=OD-OF求解;

3)由OF為△ACB的中位線得到AF=CF,再證明△ODE≌△OAF,得到DE=AF,由此得到DE=AC

(1)證明:∵AB為直徑,

∴∠ACB=90°,

∵D為弧AC中點(diǎn),

∴OD⊥AC,

∴∠AFO=90°,

∴OD⊥BC;

(2)解:∵OF∥BC,

而OA=OB,

∴OF為△ACB的中位線,

∴OF=BC=3cm,

∴DF=OD﹣OF=5cm﹣3cm=2cm;

(3)解:DE=AC.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016雙十一期間,某快遞公司計(jì)劃租用甲、乙兩種車輛快遞貨物,從貨物量來計(jì)算:若租用兩種車輛合運(yùn),10天可以完成任務(wù);若單獨(dú)租用乙種車輛,完成任務(wù)的天數(shù)是單獨(dú)租用甲種車輛完成任務(wù)天數(shù)的2倍.

(1)求甲、乙兩種車輛單獨(dú)完成任務(wù)分別需要多少天?

(2)已知租用甲、乙兩種車輛合運(yùn)需租金65000元,甲種車輛每天的租金比乙種車輛每天的租金多1500元,試問:租甲和乙兩種車輛、單獨(dú)租甲種車輛、單獨(dú)租乙種車輛這三種租車方案中,哪一種租金最少?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中央電視臺(tái)的朗讀者節(jié)目激發(fā)了同學(xué)們的讀書熱情,為了引導(dǎo)學(xué)生多讀書,讀好書,某校對(duì)八年級(jí)部分學(xué)生的課外閱讀量進(jìn)行了隨機(jī)調(diào)查,整理調(diào)查結(jié)果發(fā)現(xiàn),學(xué)生課外閱讀的本書最少的有5本,最多的有8本,并根據(jù)調(diào)查結(jié)果繪制了不完整的圖表,如圖所示:

本數(shù)(本)

頻數(shù)(人數(shù))

頻率

5

a

0.2

6

18

0.36

7

14

b

8

8

0.16

合計(jì)

50

c

我們定義頻率=,比如由表中我們可以知道在這次隨機(jī)調(diào)查中抽樣人數(shù)為50人課外閱讀量為6本的同學(xué)為18人,因此這個(gè)人數(shù)對(duì)應(yīng)的頻率就是=0.36.

(1)統(tǒng)計(jì)表中的a、b、c的值;

(2)請(qǐng)將頻數(shù)分布表直方圖補(bǔ)充完整;

(3)求所有被調(diào)查學(xué)生課外閱讀的平均本數(shù);

(4)若該校八年級(jí)共有600名學(xué)生,你認(rèn)為根據(jù)以上調(diào)查結(jié)果可以估算分析該校八年級(jí)學(xué)生課外閱讀量為7本和8本的總?cè)藬?shù)為多少嗎?請(qǐng)寫出你的計(jì)算過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)請(qǐng)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫出點(diǎn)A1的坐標(biāo).

(2)請(qǐng)畫出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后的△A2BC2

(3)求出(2)中C點(diǎn)旋轉(zhuǎn)到C2點(diǎn)所經(jīng)過的路徑長(結(jié)果保留根號(hào)和π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC內(nèi)接于⊙O,過點(diǎn)A作直線EF.

(1)如圖①,AB是直徑,要使EF是⊙O的切線,還須添加一個(gè)條件是(只需寫出三種情況).

(ī)   (īī)   (īīī)   

(2)如圖(2),若AB為非直徑的弦,∠CAE=∠B,則EF是⊙O的切線嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E、F分別在邊AB、BC上,ADE=CDF.

(1)求證:AE=CF;

(2)連結(jié)DB交EF于點(diǎn)O,延長OB至點(diǎn)G,使OG=OD,連結(jié)EG、FG,判斷四邊形DEGF是否是菱形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)

如圖,臺(tái)風(fēng)中心位于點(diǎn)P,并沿東北方向PQ移動(dòng),已知臺(tái)風(fēng)移動(dòng)的速度為30千米/時(shí),受影響區(qū)域的半徑為200千米,B市位于點(diǎn)P的北偏東75°方向上,距離點(diǎn)P 320千米處.

(1) 說明本次臺(tái)風(fēng)會(huì)影響B市;

2求這次臺(tái)風(fēng)影響B市的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是⊙O外一點(diǎn),PA,PB分別和⊙O切于A,B兩點(diǎn),C是弧AB上任意一點(diǎn),過點(diǎn)C作⊙O的切線分別交PA,PB于點(diǎn)D,E.PDE的周長為12,則PA的長為(   )

A. 12 B. 6 C. 8 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若m,n,p滿足m-n=8,mn+p2+16=0,求m+n+p的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案