分析 (1)利用“ASA”判斷△BCG≌△CFA,從而得到BG=CF;
(2)連結AG,利用等腰直角三角形的性質(zhì)得CG垂直平分AB,則BG=AG,再證明∠D=∠GAD得到AG=DG,所以BG=DG,接著證明△ADE≌△CGE得到DE=GE,則BG=2DE,利用利用△BCG≌△CFA得到CF=BG,于是有CF=2DE;
(3)先得到BG=2,GE=1,則BE=3,設CE=x,則BC=AC=2CE=2x,在Rt△BCE中利用勾股定理得到x2+(2x)2=32,解得x=$\frac{3\sqrt{5}}{5}$,所以BC=$\frac{6\sqrt{5}}{5}$,AB=$\sqrt{2}$BC=$\frac{6\sqrt{10}}{5}$,然后在Rt△ABD中利用勾股定理計算AD的長.
解答 (1)證明:∵∠ACB=90°,AC=BC,
∴△ACB為等腰直角三角形,
∴∠CAF=∠ACG=45°,
∵CG平分∠ACB,
∴∠BCG=45°,
在△BCG和△CFA中
$\left\{\begin{array}{l}{∠CBG=∠ACF}\\{BC=CA}\\{∠BCG=∠CAF}\end{array}\right.$,
∴△BCG≌△CFA,
∴BG=CF;
(2)證明:連結AG,
∵CG為等腰直角三角形ACB的頂角的平分線,
∴CG垂直平分AB,
∴BG=AG,
∴∠GBA=∠GAB,
∵AD⊥AB,
∴∠D+∠DBA=90°,∠GAD+∠GAB=90°,
∴∠D=∠GAD,
∴AG=DG,
∴BG=DG,
∵CG⊥AB,DA⊥AB,
∴CG∥AD,
∴∠DAE=∠GCE,
∵E為AC邊的中點,
∴AE=CE,
在△ADE和△CGE中
$\left\{\begin{array}{l}{∠DAE=∠GCE}\\{AE=CE}\\{∠AED=∠CEG}\end{array}\right.$,
∴△ADE≌△CGE,
∴DE=GE,
∴DG=2DE,
∴BG=2DE,
∵△BCG≌△CFA,
∴CF=BG,
∴CF=2DE;
(3)解:∵DE=1,
∴BG=2,GE=1,即BE=3,
設CE=x,則BC=AC=2CE=2x,
在Rt△BCE中,x2+(2x)2=32,解得x=$\frac{3\sqrt{5}}{5}$,
∴BC=$\frac{6\sqrt{5}}{5}$,
∴AB=$\sqrt{2}$BC=$\frac{6\sqrt{10}}{5}$,
在Rt△ABD中,∵BD=4,AB=$\frac{6\sqrt{10}}{5}$,
∴AD=$\sqrt{{4}^{2}-(\frac{6\sqrt{10}}{5})^{2}}$=$\frac{2\sqrt{10}}{5}$.
點評 本題考查了全等三角形的判定與性質(zhì):全等三角形的判定是結合全等三角形的性質(zhì)證明線段和角相等的重要工具.在判定三角形全等時,關鍵是選擇恰當?shù)呐卸l件.在應用全等三角形的判定時,要注意三角形間的公共邊和公共角,必要時添加適當輔助線構造三角形.也考查了等腰直角三角形的性質(zhì).
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com