【題目】閱讀理解應用
待定系數(shù)法:設某一多項式的全部或部分系數(shù)為未知數(shù)、利用當兩個多項式為恒等式時,同類項系數(shù)相等的原理確定這些系數(shù),從而得到待求的值.
待定系數(shù)法可以應用到因式分解中,例如問題:因式分解.
因為為三次多項式,若能因式分解,則可以分解成一個一次多項式和一個二次多項式的乘積.
故我們可以猜想可以分解成,展開等式右邊得:
,根據(jù)待定系數(shù)法原理,等式兩邊多項式的同類項的對應系數(shù)相等:,,可以求出,.
所以.
(1)若取任意值,等式恒成立,則________;
(2)已知多項式有因式,請用待定系數(shù)法求出該多項式的另一因式;
(3)請判斷多項式是否能分解成的兩個均為整系數(shù)二次多項式的乘積,并說明理由.
【答案】(1)1;(2);(3)多項式能分解成兩個均為整系數(shù)二次多項式的乘積,理由詳見解析.
【解析】
(1)根據(jù)題目中的待定系數(shù)法原理即可求得結果;
(2)根據(jù)待定系數(shù)法原理先設另一個多項式,然后根據(jù)恒等原理即可求得結論;
(3)根據(jù)待定系數(shù)原理和多項式乘以多項式即可求得結論.
(1)根據(jù)待定系數(shù)法原理,得3-a=2,a=1.
故答案為1.
(2)設另一個因式為(x2+ax+b),
(x+1)(x2+ax+b)=x3+ax2+bx+x2+ax+b
=x3+(a+1)x2+(a+b)x+b
∴a+1=0 a=-1 b=3
∴多項式的另一因式為x2-x+3.
答:多項式的另一因式x2-x+3.
(3)多項式x4+x2+1能分解成兩個整系數(shù)二次多項式的乘積.理由如下:
設多項式x4+x2+1能分解成①(x2+1)(x2+ax+b)或②(x+1)(x3+ax2+bx+c)或③(x2+x+1)(x2+ax+1),
①(x2+1)(x2+ax+b)
=x4+ax3+bx2+ax+b
=x4+ax3+(b+1)x2+ax+b
∴a=0, b+1=1, b=1
由b+1=1得b=0≠1,故此種情況不存在.
②(x+1)(x3+ax2+bx+c),
=x4+ax3+bx2+cx+x3+ax2+bx+c
=x4+(a+1)x3+(b+a)x2+(b+c)x+c
∴a+1=0 b+a=1 b+c=0 c=1
解得a=-1,b=2,c=1,
又 b+c=0,b=-1≠2,故此種情況不存在.
③(x2+x+1)(x2+ax+1)
=x4+(a+1)x3+(a+2)x2+(a+1)x+1
∴a+1=0,a+2=1,
解得a=-1.
即x4+x2+1=(x2+x+1)(x2-x+1)
∴x4+x2+1能分解成兩個整系數(shù)二次三項式的乘積卻不能分解成兩個整系數(shù)二次二項式與二次三項式的乘積.
答:多項式x4+x2+1能分解成兩個整系數(shù)二次三項式的乘積.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,三個頂點的坐標分別為,,。
(1)請畫出關于軸對稱后得到的;
(2)直接寫出點,點,點的坐標;
(3)在軸上尋找一個點,使的周長最小,并直接寫出的周長的最小值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明準備用一塊矩形材料剪出如圖所示的四邊形ABCD(陰影部分),做成要制作的飛機的一個機翼,請你根據(jù)圖中的數(shù)據(jù)幫小明計算出CD的長度.(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知拋物線經過A(﹣4,0),B(0,﹣4),C(2,0)三點.
(1)求拋物線解析式;
(2)若點M為第三象限內拋物線上一動點,點M的橫坐標為m,△MOA的面積為S.求S關于m的函數(shù)關系式,并求出當m為何值時,S有最大值,這個最大值是多少?
(3)若點Q是直線y=﹣x上的動點,過Q做y軸的平行線交拋物線于點P,判斷有幾個Q能使以點P,Q,B,O為頂點的四邊形是平行四邊形的點,直接寫出相應的點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線經過點A(-1,0),B(4,0)C(0,2)三點,點D與點C關于x軸對稱,點P是x軸上的一個動點,設點P的坐標為(m,0),過點P做x軸的垂線交拋物線于點Q,交直線BD于點M.
(1)求該拋物線所表示的二次函數(shù)的表達式;
(2)已知點F(0,),當點P在x軸上運動時,試求m為何值時,四邊形DMQF是平行四邊形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在圍棋盒中有 x 顆黑色棋子和 y 顆白色棋子,從盒中隨機地取出一個棋子,如果它是黑色棋子的概率是;如果往盒中再放進 10 顆黑色棋子,則取得黑色棋子的概率變?yōu)?/span>.求 x 和 y 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點在的邊上,交于,交于,若添加條件________,則四邊形是矩形;若添加條件________,則四邊形是菱形;若添加條件________,則四邊形是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在△ABC中,AB=AC,D是射線BC上一點(點D不與點B重合),連結AD,將AD繞著點D逆時針旋轉∠BAC的度數(shù)得到AE,連結DE、CE.
(1)當點D在邊BC上,求證:△BAD≌△CAE.
(2)當點D在邊BC上,若∠BAC=a,求∠DCE的大小.(用含a的代數(shù)式表示).
(3)當DE與△ABC的邊所在的直線垂直,且∠BAC=40°時,請借助圖②,直接寫出∠CED的大小.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com