【題目】如圖,△ABC中,∠BAC=90°,∠ABC=∠ACB,又∠BDC=∠BCD,且∠1=∠2,求∠3的度數(shù).
【答案】75°
【解析】試題分析:根據(jù)已知求得∠ACB=45°,進而求得∠BDC=∠BCD=45°+∠1,根據(jù)三角形內(nèi)角和定理求得2(45°+∠1)+∠1=180°,即可求得∠1=30°,然后根據(jù)三角形內(nèi)角和180°,從而求得∠3的度數(shù).
試題解析:∵∠BAC=90°,∠ABC=∠ACB,
∴∠ACB=45°,
∵∠BDC=∠BCD,∠BCD=∠ACB+∠2,
∴∠BDC=∠BCD=45°+∠2,
∵∠1=∠2,
∴∠BDC=∠BCD=45°+∠1,
∵∠BDC+∠BCD+∠1=180°,
∴2(45°+∠1)+∠1=180°
∴∠1=30°,
∴∠3==75°.
科目:初中數(shù)學 來源: 題型:
【題目】某超市用元購進某種干果后進行銷售,由于銷售狀況良好,超市又調(diào)撥元資金購進該種干果,購進干果的數(shù)量是第一次的倍,但這次每干克的進價比第一次的進價提高了元.
(1)該種干果第一次的進價是每千克多少元?
(2)如果超市按每千克元的價格銷售,當大部分干果售出后,余下的千克按售價的折售完,超市銷售這種干果共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把拋物線沿軸向右平移個單位后,再沿軸翻折得到拋物線稱為第一次操作,把拋物線沿軸向右平移個單位后,再沿軸翻折得到拋物線稱為第二次操作,…,以此類推,則拋物線經(jīng)過第此操作后得到的拋物線的解析式為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,點B在線段CE上.
(感知)(1)如圖①,∠C=∠ABD=∠E=90°,易知△ACB∽△AED(不要求證明);
(拓展)(2)如圖②,△ACE中,AC=AE,且∠ABD=∠E,求證:△ACB∽△BED;
(應用)(3)如圖③,△ACE為等邊三角形,且∠ABD=60°,AC=6,BC=2,則△ABD與△BDE的面積比為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如今通過微信朋友圈發(fā)布自己每天行走的步數(shù)已成為一種時尚.“健身達人”小張為了了解他的微信朋友圈里大家的運動情況,隨機抽取了部分好友進行調(diào)查,把他們1月29日那天每人行走的步數(shù)情況分為五個類別:A(0~4000步)(說明:0~4000表示大于或等于0,小于或等于4000,下同)、B(4001~8000步)、C(8001~12000步)、D(12001~16000步)、E(16000步以上),并將統(tǒng)計結(jié)果繪制了如圖1和2兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中提供的信息解答下列問題:
(1)小張隨機抽取了 名微信朋友圈好友;
(2)將圖1的條形統(tǒng)計圖補充完整;
(3)已知小張的微信朋友圈里共300人,請根據(jù)本次抽查的結(jié)果,估計在它的微信朋友圈里1月29日那天行走不超過8000步的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為6,面積是18,腰AC的垂直平分線EF分別交AC,AB于E,F點,若點D為BC邊的中點,點M為線段EF上一動點,則△CDM的周長的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定四邊形ABCD為平行四邊形的是( 。
A.AB∥CD,AD∥BCB.OA=OC,OB=OD
C.AD=BC,AB∥CDD.AB=CD,AD=BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點,F是AM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N.
(1)求證:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com