【題目】如圖,P是矩形ABCD內一點,APBP于點P,CEBP于點E,BP=EC.

(1)請判斷四邊形ABCD是否是正方形?若是,寫出證明過程;若不是,說明理由;

(2)延長EC到點F,使CF=BE,連接PFBC的延長線于點G,求∠BGP的度數(shù).

【答案】(1)四邊形ABCD為正方形.證明見解析;(2)BGP=45°

【解析】試題分析:(1)由四邊形ABCD為矩形可得易得APBP,可得易得∠PBC=PAB,由AAS定理可得△ABP≌△BCE,由全等三角形的性質可得AB=BC易得結論;
(2)連接AC,由△ABP≌△BCE,易得 可得 易得四邊形是平行四邊形,可得由四邊形是正方形, 是對角線,可得

試題解析:(1)四邊形ABCD為正方形。

∵四邊形ABCD是矩形,

APBP,

∴∠PBC=PAB,

CEBP,

在△ABP與△BCE中,

∴△ABP≌△BCE,

AB=BC

∴矩形ABCD為正方形;

(2)連接AC

∵△ABP≌△BCE,

AP=BE,

BE=CF

AP=CF,

APBP,CEBP,

APCF,

∴四邊形ACGP是平行四邊形,

ACPF

∴∠ACB=BGC,

∵四邊形ABCD是正方形,AC是對角線,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】自我省深化課程改革以來,某校開設了:A.利用影長求物體高度,B.制作視力表,C.設計遮陽棚,D.制作中心對稱圖形,四類數(shù)學實踐活動課.規(guī)定每名學生必選且只能選修一類實踐活動課,學校對學生選修實踐活動課的情況進行抽樣調查,將調查結果繪制成如下兩幅不完整的統(tǒng)計圖.

根據(jù)圖中信息解決下列問題:

(1)本次共調查名學生,扇形統(tǒng)計圖中B所對應的扇形的圓心角為度;

(2)補全條形統(tǒng)計圖;

(3)選修D類數(shù)學實踐活動的學生中有2名女生和2名男生表現(xiàn)出色,現(xiàn)從4人中隨機抽取2人做校報設計,請用列表或畫樹狀圖法求所抽取的兩人恰好是1名女生和1名男生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù) 軸,軸交于兩點,與反比例函數(shù)相交于兩點,分別過兩點作軸,軸的垂線,垂足為,連接,有下列四個結論:①的面積相等;②;③;④,其中正確的結論個數(shù)是(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某村在推進美麗鄉(xiāng)村活動中,決定建設幸福廣場,計劃鋪設相同大小規(guī)格的紅色和藍色地磚.經過調査.獲取信息如下:

購買數(shù)量低于5000

購買數(shù)量不低于5000

紅色地磚

原價銷售

以八折銷售

藍色地磚

原價銷售

以九折銷售

如果購買紅色地磚4000塊,藍色地磚6000塊,需付款86000元;如果購買紅色地磚10000塊,藍色地磚3500塊,需付款99000元.

(1)紅色地磚與藍色地磚的單價各多少元?

(2)經過測算,需要購置地磚12000塊,其中藍色地磚的數(shù)量不少于紅色地磚的一半,并且不超過6000塊,如何購買付款最少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有A、B兩個黑布袋,A布袋中有四個除標號外完全相同的小球,小球上分別標有數(shù)字0,1,2,3,B布袋中有三個除標號外完全相同的小球,小球上分別標有數(shù)字0,1,2.小明先從A布袋中隨機取出一個小球,用m表示取出的球上標有的數(shù)字,再從B布袋中隨機取出一個小球,用n表示取出的球上標有的數(shù)字.

(1)用(m,n)表示小明取球時m與n的對應值,畫出樹狀圖(或列表),寫出(m,n)的所有取值;

(2)求關于x的一元二次方程沒有實數(shù)根的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次中學生田徑運動會上,根據(jù)參加男子跳高初賽的運動員的成績(單位:m),繪制出如下的統(tǒng)計圖和圖,請根據(jù)相關信息,解答下列問題:

)圖1中a的值為 ;

)求統(tǒng)計的這組初賽成績數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

)根據(jù)這組初賽成績,由高到低確定9人進入復賽,請直接寫出初賽成績?yōu)?.65m的運動員能否進入復賽.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018年首屆“進博會”期間,上海對周邊道路進行限速行駛.道路段為監(jiān)測區(qū),、為監(jiān)測點(如圖).已知,、在同一條直線上,且,米,,

1)求道路段的長;(精確到1米)

2)如果段限速為60千米/時,一輛車通過段的時間為90秒,請判斷該車是否超速,并說明理由.(參考數(shù)據(jù): ,,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD切⊙O于點C,AD交⊙O于點EAC平分∠BAD,連接BE

1)求證:CDED;

2)若CD=4,AE=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等腰三角形是線段上的一點,連結,且有.

1)若,求的長;

2)若,求證:.

查看答案和解析>>

同步練習冊答案