【題目】如圖,P是矩形ABCD內一點,AP⊥BP于點P,CE⊥BP于點E,BP=EC.
(1)請判斷四邊形ABCD是否是正方形?若是,寫出證明過程;若不是,說明理由;
(2)延長EC到點F,使CF=BE,連接PF交BC的延長線于點G,求∠BGP的度數(shù).
【答案】(1)四邊形ABCD為正方形.證明見解析;(2)∠BGP=45°
【解析】試題分析:(1)由四邊形ABCD為矩形可得易得由AP⊥BP,可得易得∠PBC=∠PAB,由AAS定理可得△ABP≌△BCE,由全等三角形的性質可得AB=BC,易得結論;
(2)連接AC,由△ABP≌△BCE,易得又 可得 易得四邊形是平行四邊形,可得由四邊形是正方形, 是對角線,可得
試題解析:(1)四邊形ABCD為正方形。
∵四邊形ABCD是矩形,
即
∵AP⊥BP,
∴∠PBC=∠PAB,
∵CE⊥BP,
在△ABP與△BCE中,
∴△ABP≌△BCE,
∴AB=BC,
∴矩形ABCD為正方形;
(2)連接AC,
∵△ABP≌△BCE,
∴AP=BE,
∵BE=CF,
∴AP=CF,
∵AP⊥BP,CE⊥BP,
∴AP∥CF,
∴四邊形ACGP是平行四邊形,
∴AC∥PF,
∴∠ACB=∠BGC,
∵四邊形ABCD是正方形,AC是對角線,
∴
科目:初中數(shù)學 來源: 題型:
【題目】自我省深化課程改革以來,某校開設了:A.利用影長求物體高度,B.制作視力表,C.設計遮陽棚,D.制作中心對稱圖形,四類數(shù)學實踐活動課.規(guī)定每名學生必選且只能選修一類實踐活動課,學校對學生選修實踐活動課的情況進行抽樣調查,將調查結果繪制成如下兩幅不完整的統(tǒng)計圖.
根據(jù)圖中信息解決下列問題:
(1)本次共調查名學生,扇形統(tǒng)計圖中B所對應的扇形的圓心角為度;
(2)補全條形統(tǒng)計圖;
(3)選修D類數(shù)學實踐活動的學生中有2名女生和2名男生表現(xiàn)出色,現(xiàn)從4人中隨機抽取2人做校報設計,請用列表或畫樹狀圖法求所抽取的兩人恰好是1名女生和1名男生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù) 與軸,軸交于兩點,與反比例函數(shù)相交于兩點,分別過兩點作軸,軸的垂線,垂足為,連接,有下列四個結論:①與的面積相等;②∽;③;④,其中正確的結論個數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某村在推進美麗鄉(xiāng)村活動中,決定建設幸福廣場,計劃鋪設相同大小規(guī)格的紅色和藍色地磚.經過調査.獲取信息如下:
購買數(shù)量低于5000塊 | 購買數(shù)量不低于5000塊 | |
紅色地磚 | 原價銷售 | 以八折銷售 |
藍色地磚 | 原價銷售 | 以九折銷售 |
如果購買紅色地磚4000塊,藍色地磚6000塊,需付款86000元;如果購買紅色地磚10000塊,藍色地磚3500塊,需付款99000元.
(1)紅色地磚與藍色地磚的單價各多少元?
(2)經過測算,需要購置地磚12000塊,其中藍色地磚的數(shù)量不少于紅色地磚的一半,并且不超過6000塊,如何購買付款最少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有A、B兩個黑布袋,A布袋中有四個除標號外完全相同的小球,小球上分別標有數(shù)字0,1,2,3,B布袋中有三個除標號外完全相同的小球,小球上分別標有數(shù)字0,1,2.小明先從A布袋中隨機取出一個小球,用m表示取出的球上標有的數(shù)字,再從B布袋中隨機取出一個小球,用n表示取出的球上標有的數(shù)字.
(1)用(m,n)表示小明取球時m與n的對應值,畫出樹狀圖(或列表),寫出(m,n)的所有取值;
(2)求關于x的一元二次方程沒有實數(shù)根的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次中學生田徑運動會上,根據(jù)參加男子跳高初賽的運動員的成績(單位:m),繪制出如下的統(tǒng)計圖①和圖②,請根據(jù)相關信息,解答下列問題:
(Ⅰ)圖1中a的值為 ;
(Ⅱ)求統(tǒng)計的這組初賽成績數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)這組初賽成績,由高到低確定9人進入復賽,請直接寫出初賽成績?yōu)?.65m的運動員能否進入復賽.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年首屆“進博會”期間,上海對周邊道路進行限速行駛.道路段為監(jiān)測區(qū),、為監(jiān)測點(如圖).已知,、、在同一條直線上,且,米,,.
(1)求道路段的長;(精確到1米)
(2)如果段限速為60千米/時,一輛車通過段的時間為90秒,請判斷該車是否超速,并說明理由.(參考數(shù)據(jù): ,,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CD切⊙O于點C,AD交⊙O于點E,AC平分∠BAD,連接BE.
(1)求證:CD⊥ED;
(2)若CD=4,AE=2,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com