【題目】作圖題:
(1)如圖,在邊長為1個(gè)單位長度的小正方形組成的網(wǎng)格中,按要求作圖.
①利用網(wǎng)格線在直線l上求作一點(diǎn)Q,使得QA+QB的和最短,請?jiān)谥本l上標(biāo)出點(diǎn)Q位置,QA+QB的和最短距離為 _ 個(gè)單位。
②在網(wǎng)格中,找一格點(diǎn)E,使△EBC與△ABC全等(不重合),這樣的格點(diǎn)有 _ _ 個(gè).
(2)尺規(guī)作圖:如圖△ABC,求作點(diǎn)P使得點(diǎn)P到AB、BC邊的距離相等,且同時(shí)到A、C兩點(diǎn)的距離相等,保留作圖痕跡。
【答案】(1)①見解析,;②3;(2)見解析.
【解析】
(1)①作點(diǎn)B關(guān)于l的對稱點(diǎn)B’,連接AB’交l于點(diǎn)Q,則點(diǎn)Q即為所求,而QA+QB的最短距離就是AB’的長,利用勾股定理進(jìn)行計(jì)算即可;②根據(jù)全等三角形的判定找出所有符合題意的點(diǎn)E即可;
(2)作∠ABC的角平分線與線段AC的垂直平分線,它們的交點(diǎn)就是所求的點(diǎn)P.
解:(1)①如圖所示:點(diǎn)Q即為所求,
QA+QB的最短距離=AB’=個(gè)單位;
②如圖所示,△E1CB,△E2CB,△E3BC與△ABC全等,
故這樣的格點(diǎn)有3個(gè);
(2)如圖所示:點(diǎn)P即為所求.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地是一個(gè)降水豐富的地區(qū),今年4月初,由于連續(xù)降雨導(dǎo)致該地某水庫水位持續(xù)上漲,經(jīng)觀測水庫1日—4日的水位變化情況,發(fā)現(xiàn)有這樣規(guī)律, 1日,水庫水位為米,此后日期每增加一天,水庫水位就上漲米。
(1)請求出該水庫水位(米)與日期(日)之間的函數(shù)表達(dá)式;(注:4月1日,即,4月2日,即,…,以次類推)
(2)請用求出的函數(shù)表達(dá)式預(yù)測該水庫今年4月6日的水位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在ΔABC中,DE、MN是邊AB、AC的垂直平分線,其垂足分別為點(diǎn)D、M,分別交BC于點(diǎn)E、N,且DE和MN交于點(diǎn)F.
(1)若∠B=24°,求∠BAE的度數(shù).
(2)若AB=8,AC=11,思考ΔAEN的周長肯定小于多少?
(3)若∠EAN=40°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0.
(1)已知x=2是方程的一個(gè)根,求m的值;
(2)以這個(gè)方程的兩個(gè)實(shí)數(shù)根作為△ABC中AB、AC(AB<AC)的邊長,當(dāng)BC=時(shí),△ABC是等腰三角形,求此時(shí)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB的垂直平分線EF交BC于點(diǎn)E,交AB于點(diǎn)F,D為線段CE的中點(diǎn),BE=AC.
(1)求證:AD⊥BC.
(2)若∠BAC=75°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB與⊙O相切于點(diǎn)C,OA,OB分別交⊙O于點(diǎn)D,E,.
(1)求證:OA=OB;
(2)已知AB=4,OA=4,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按要求完成作圖:
(1)作出△ABC關(guān)于x軸對稱的圖形;
(2)寫出A、B、C的對應(yīng)點(diǎn)A′、B′、C′的坐標(biāo);
(3)在x軸上畫出點(diǎn)Q,使△QAC的周長最小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0.
(1)已知x=2是方程的一個(gè)根,求m的值;
(2)以這個(gè)方程的兩個(gè)實(shí)數(shù)根作為△ABC中AB、AC(AB<AC)的邊長,當(dāng)BC=時(shí),△ABC是等腰三角形,求此時(shí)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直線上擺放著三個(gè)正方形
(1)如圖1,已知水平放置的兩個(gè)正方形的邊長依次是,斜著放置的正方形的面積_ ;兩個(gè)直角三角形的面積之和為____ (均用表示)
(2)如圖2,小正方形面積, 斜著放置的正方形的面積,求圖中兩個(gè)鈍角三角形的面積_ ;_
(3)圖3是由五個(gè)正方形所搭成的平面圖,與分別表示所在地三角形與正方形的面積,試寫出_ ;_ .(均用表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com