【題目】在平面直角坐標(biāo)系中的位置如圖所示,先將向右平移3個單位,再向下平移1個單位到,關(guān)于軸對稱.

1)畫出

2)在軸上確定一點,使的值最小,試求出點的坐標(biāo).

【答案】1)詳見解析;(2

【解析】

1)△ABC向右平移3個單位,再向下平移1個單位到△A1B1C1,△A1B1C1和△A2B2C2關(guān)于x軸對稱,據(jù)此作圖即可;

2)依據(jù)軸對稱的性質(zhì),連接BA2,交x軸于點P,此時BP+A1P的值最小,依據(jù)直線BA2的解析式,即可得到點P的坐標(biāo).

解:(1)如圖所示,△A1B1C1和△A2B2C2即為所求;

2)如圖所示,連接BA2,交x軸于點P,則點P即為所求;

設(shè)直線BA2的解析式為,由B-3,2),A23,-3)可得,

,解得

∴直線BA2的解析式為y=

當(dāng)y=0時,

解得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖所示,對稱軸為x=1,給出下列結(jié)論:

abc0;b2=4ac; 4a+2b+c0;3a+c0

其中,正確的結(jié)論是______.(寫出正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.

(1)求證:AF=BD;

(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】六張形狀大小完全相同的小長方形卡片,分兩種不同形式不重疊的放在一個底面長為m,寬為n的長方形盒子底部(如圖、圖),盒子底面未被卡片覆蓋的部分用陰影表示,設(shè)圖中陰影圖形的周長為,圖中兩個陰影部分圖形的周長和為 則用含m、n的代數(shù)式=_______,=_______,,則m=_____(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線經(jīng)過點,作軸于點,將繞點逆時針旋轉(zhuǎn)得到.若點的坐標(biāo)為,,則點的坐標(biāo)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“綠帶城中掛,人在畫中游”,張平和王亮同學(xué)周末相約騎行于“步移景異,心曠神怡”的溫江田園綠道,他們從同一地方同時騎自行車出發(fā)(騎行過程中速度保持不變),最后同時到達了同一個地方. 如圖刻畫了他們離出發(fā)點的路程(單位:米)與出發(fā)后的時間(單位:分鐘)之間的關(guān)系. 已知張平中途兩次休息時間相同,三段騎行時間也分別相同;王亮中途休息一次,兩段騎行時間相同. 張平總的休息時間比王亮的休息時間多分鐘. 請結(jié)合圖中信息解答下列問題:

(1)在這次騎行活動中,他們的騎行路程都是多少米?

(2)求出張平和王亮的騎行速度分別是多少米/分鐘?

(3)求出王亮出發(fā)后第一次追上張平的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,由兩個長為8,寬為4的全等矩形疊合而得到四邊形ABCD,則四邊形ABCD面積的最大值是( )

A.15B.16C.19D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+2與x軸交于點A,與y軸交于點C,拋物線y=x2+bx+c經(jīng)過A、C兩點,與x軸的另一交點為點B.

(1)求拋物線的函數(shù)表達式;

(2)點D為直線AC上方拋物線上一動點;

①連接BC、CD,設(shè)直線BD交線段AC于點E,△CDE的面積為S1, △BCE的面積為S2, 求的最大值;

②過點D作DF⊥AC,垂足為點F,連接CD,是否存在點D,使得△CDF中的某個角恰好等于∠BAC的2倍?若存在,求點D的橫坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對任意一個三位數(shù)n,如果n滿足各個數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為相異數(shù),將一個相異數(shù)”n的各個數(shù)位上的數(shù)字之和記為Fn).例如n=135時,F135=1+3+5=9

1)對于相異數(shù)”n,若Fn=6,請你寫出一個n的值;

2)若ab都是相異數(shù),其中a=100x+12,b=350+y1≤x≤91≤y≤9,x,y都是正整數(shù)),規(guī)定:k,當(dāng)Fa+Fb=18時,求k的最小值.

查看答案和解析>>

同步練習(xí)冊答案