【題目】如圖,二次函數(shù)y=ax2+bx+c(a#0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0).下列結論:①ab<0;②b2>4ac;③0<b<1;④當x<﹣1時,y<0.其中正確結論的個數(shù)是( 。
A.4個B.3個C.2個D.1個
【答案】A
【解析】
由拋物線的對稱軸在y軸右側,可以判定a、b異號,由此確定①正確;
由拋物線與x軸有兩個交點得到b2﹣4ac>0,由此判定②正確;
由拋物線過點(﹣1,0),得出a﹣b+c=0,即a=b﹣1,由a<0得出b<1;由a<0,及ab<0,得出b>0,由此判定③正確;
由圖象可知,當x<﹣1時,函數(shù)值y<0,由此判定④正確.
解:∵二次函數(shù)y=ax2+bx+c(a≠0)過點(0,1)和(﹣1,0),
∴c=1,a﹣b+c=0.
①∵拋物線的對稱軸在y軸右側,∴x=﹣>0,
∴a與b異號,∴ab<0,正確;
②∵拋物線與x軸有兩個不同的交點,∴b2﹣4ac>0,
∴b2>4ac,正確;
③∵拋物線開口向下,∴a<0,
∵ab<0,∴b>0.
∵a﹣b+c=0,c=1,∴a=b﹣1,
∵a<0,∴b﹣1<0,b<1,
∴0<b<1,正確;
④由圖可知,當x<﹣1時,y<0,正確;
綜上所述,正確的結論有①②③④.
故選:A.
科目:初中數(shù)學 來源: 題型:
【題目】某公司投資新建了一商場,共有商鋪30間.據(jù)預測,當每間的年租金定為10萬元時,可全部租出.每間的年租金每增加5 000元,少租出商鋪1間.該公司要為租出的商鋪每間每年交各種費用1萬元,未租出的商鋪每間每年交各種費用5 000元.
(1)當每間商鋪的年租金定為13萬元時,能租出多少間?
(2)當每間商鋪的年租金定為多少萬元時,該公司的年收益(收益=租金-各種費用)為275萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,D為的中點,連接OD交弦AC于點F,過點D作DE∥AC,交BA的延長線于點E.
(1)求證:DE是⊙O的切線;
(2)連接CD,若OA=AE=4,求四邊形ACDE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,n個邊長為1的相鄰正方形的一邊均在同一直線上,點M1,M2,M3,…Mn分別為邊B1B2,B2B3,B3B4,…,BnBn+1的中點,△B1C1M1的面積為S1,△B2C2M2的面積為S2,…△BnCnMn的面積為Sn,則Sn= .(用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(9分)如圖所示,某數(shù)學活動小組選定測量小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30,朝大樹方向下坡走6米到達坡底A處,在A處測得大樹頂端B的仰角是48°. 若坡角∠FAE=30°,求大樹的高度. (結果保留整數(shù),參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=kx在第一象限與雙曲線y=,y=分別交于A、B兩點,過A、B兩點分別作x軸的垂線段,垂足分別為D(1,0)、C(3,0),梯形ABCD的面積為8.求三個函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】麗水苛公司將“麗水山耕”農(nóng)副產(chǎn)品運往杭州市場進行銷售.記汽車行駛時間為t小時,平均速度為v千米/小時(汽車行駛速度不超過100千米/小時).根據(jù)經(jīng)驗,v,t的一組對應值如下表:
v(千米/小時) | 75 | 80 | 85 | 90 | 95 |
t(小時) | 4.00 | 3.75 | 3.53 | 3.33 | 3.16 |
(1)根據(jù)表中的數(shù)據(jù),求出平均速度v(千米/小時)關于行駛時間t(小時)的函數(shù)表達式;
(2)汽車上午7:30從麗水出發(fā),能否在上午10:00之前到達杭州市?請說明理由:
(3)若汽車到達杭州市場的行駛時間t滿足3.5≤t≤4,求平均速度v的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解我市居民用水情況,在某小區(qū)隨機抽查了20戶家庭,并將這些家庭的月用水量進行統(tǒng)計,結果如下表:
月用水量(噸) | 4 | 5 | 6 | 8 | 13 |
戶數(shù) | 4 | 5 | 7 | 3 | 1 |
則關于這20戶家庭的月用水量,下列說法正確的是( 。
A.中位數(shù)是5B.平均數(shù)是5C.眾數(shù)是6D.方差是6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圓 O 的半徑為 1,過點 A(2,0)的直線與圓 O 相切于點 B,與 y 軸相交于點 C.
(1)求 AB 的長;
(2)求直線 AB 的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com