【題目】如圖,在□ABCD中,點EAD上,請僅用無刻度直尺按要求作圖(保留作圖痕跡,不寫作法)

1)在圖1中,過點E作直線EF□ABCD分成兩個全等的圖形;

2)在圖2中,DEDC,請你作出∠BAD的平分線AM

【答案】1)詳見解析;(2)詳見解析

【解析】

1)作ABCD的對角線AC、BD,交于點O,作直線EOBC于點F,直線EF即為所求;

2)由DEDC,在BC上取點M,且BM=DE,由等腰三角形的性質(zhì)可得AB=BM,則∠AMB=BAM,又因為ABCD是平行四邊形,則根據(jù)平行線的性質(zhì)可得∠AMB=DAM,由DEDC,作射線AM即可得.

1)如圖1,直線EF即為所求;

2)因為DEDC,在BC上取點M,且BM=DE,則可得AB=BM,則∠AMB=BAM,又因為ABCD是平行四邊形,則根據(jù)平行線的性質(zhì)可得∠AMB=DAM,故如圖2,射線AM即為所求.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】快、慢兩車分別從相距540千米路程的甲、乙兩地同時出發(fā),勻速行駛,先相向而行,途中慢車因故停留1小時,然后以原速度繼續(xù)向甲地行駛,到達甲地后停止行駛;快車到達乙地后,立即按原路原速返回甲地(快車掉頭的時間忽略不計),快、慢兩車距乙地的路程y(千米)與所有時間x(小時)之間的函數(shù)圖像如圖?燔嚺c慢車第一次相遇時,慢車距離甲地_________千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把含有30°角的三角板ABO置入平面直角坐標系中,A,B兩點坐標分別為(3,0)和(0,3 ).動點PA點開始沿折線AO﹣OB﹣BA運動,點PAO,OB,BA上運動,速度分別為1,,2(長度單位/秒)﹒一直尺的上邊緣lx軸的位置開始以(長度單位/秒)的速度向上平行移動(即移動過程中保持l∥x軸),且分別與OB,AB交于E,F(xiàn)兩點﹒設動點P與動直線l同時出發(fā),運動時間為t秒,當點P沿折線AO﹣OB﹣BA運動一周時,直線l和動點P同時停止運動.

請解答下列問題:

(1)過A,B兩點的直線解析式是   ,∠BAO=   ;

(2)當t﹦4時,點P的坐標為   ;當t﹦   ,點P與點E重合;

(3)作點P關于直線EF的對稱點P′.在運動過程中,若形成的四邊形PEP′F為菱形,則t的值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,函數(shù)的圖象分別為直線,,過點(1,0)作軸的垂線交于點,過點作軸的垂線交于點,過點軸的垂線交于點,過點軸的垂線交于點,…依次進行下去,則點的坐標為_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是由27個相同的小立方塊搭成的幾何體,它的三個視圖是3×3的正方形,若拿掉若干個小立方塊(幾何體不倒掉),其三個視圖仍都為3×3的正方形,則最多能拿掉小立方塊的個數(shù)為( 。

A. 10 B. 12 C. 15 D. 18

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為弘揚中華傳統(tǒng)文化,黔南州近期舉辦了中小學生國學經(jīng)典大賽,比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經(jīng).比賽形式為兩人對抗賽,即把四種比賽項目寫在4張完全相同的卡片上,比賽時,比賽的兩人從中隨機抽取1張卡片作為自己的比賽項目(不放回,且每人只能抽取一次)比賽時,小紅和小明分到一組.(1)小明先抽取,那么小明抽到唐詩的概率是多少?

2)小紅擅長唐詩,小紅想:小明先抽取,我后抽取抽到唐詩的概率是不同的,且小明抽到唐詩的概率更大,若小紅后抽取,小紅抽中唐詩的概率是多少?小紅的想法對嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知RtABC中,∠ACB90°,∠BAC30°,延長BCD使CDBC,連接AD,且AD4,點P為線段AC上一動點,連接BP.則2BP+AP的最小值為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知BF平分的外角D為射線BF上一動點.

1)如圖所示,若,求證:;

2)在D點運動的過程中,試比較的大小,并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,,,將邊AC沿CE翻折,使點A落在AB上的點D處;再將邊BC沿CF翻折,使點B落在CD的延長線上的點B處,兩條折痕與斜邊AB分別交于點EF,則線段EF的長為(

A.B.C.4D.

查看答案和解析>>

同步練習冊答案