【題目】對于點P(a,b),點Q(c,d),如果a﹣b=c﹣d,那么點P與點Q就叫作等差點.例如:點P(4,2),點Q(﹣1,﹣3),因4﹣2=1﹣(﹣3)=2,則點P與點Q就是等差點.如圖在矩形GHMN中,點H(2,3),點N(﹣2,﹣3),MN⊥y軸,HM⊥x軸,點P是直線y=x+b上的任意一點(點P不在矩形的邊上),若矩形GHMN的邊上存在兩個點與點P是等差點,則b的取值范圍為_____.
【答案】﹣5<b<5
【解析】
由題意,G(-2,3),M(2,-3),根據(jù)等差點的定義可知,當直線y=x+b與矩形MNGH有兩個交點時,矩形GHMN的邊上存在兩個點與點P是等差點,求出直線經(jīng)過點G或M時的b的值即可判斷.
解:由題意,G(-2,3),M(2,-3),
根據(jù)等差點的定義可知,當直線y=x+b與矩形MNGH有兩個交點時,矩形GHMN的邊上存在兩個點與點P是等差點,
當直線y=x+b經(jīng)過點G(-2,3)時,b=5,
當直線y=x+b經(jīng)過點M(2,-3)時,b=-5,
∴滿足條件的b的范圍為:-5<b<5.
故答案為:-5<b<5.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線 ∥ ∥ ,且 與 的距離為1, 與 的距離為2,等腰 △ABC的頂點分別在直線 , , 上,AB=AC,∠BAC=120° ,則等腰三角形的底邊長為。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,、是直線,,,.與平行嗎?為什么?
解:,理由如下:
∵(已知)
∴( )
∵(已知)
∴_________( )
∵(已知)
∴( )
即
∴_________(等量代換)
∴( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著“低碳生活,綠色出行”理念的普及,新能源汽車正逐漸成為人們喜愛的交通工具.某汽車銷售公司計劃購進一批新能源汽車嘗試進行銷售,據(jù)了解2輛A型汽車、3輛B型汽氣車的進價共計80萬元;3輛A型汽車、2輛B型汽車的進價共計95萬元。
(1)求A、B兩種型號的汽車每輛進價分別為多少方元?
(2)若該公司計劃正好用200萬元購進以上兩種型號的新能源汽車(兩種型號的汽車均購買),請你幫助該公司設(shè)計購買方案;
(3)若該汽車銷售公司銷售1輛A型汽車可獲利8000元,銷售1輛B型汽車可獲利5000元,在(2)中的購買方案中,假如這些新能源汽車全部售出,哪種方案獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中每個小方格都是長為1個單位的正方形,若學校位置坐標為A(1,2),解答以下問題:
(1)請在圖中建立適當?shù)闹苯亲鴺讼,并寫出圖書館B位置的坐標;
(2)若體育館位置坐標為C(-3,3),請在坐標系中標出體育館的位置,并順次連接學校、圖書館、體育館,得到△ABC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形中,為對角線上一點,且,交于,延長交于.
(1)求證:;
(2)已知如圖(2),為上一點,連接,并將逆時針旋轉(zhuǎn)至,連接,為的中點,連接,試求出.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀下列一段文字,再解答問題
已知在平面內(nèi)有兩點,,其兩點間的距離公式為,同時,當兩點所在的直線在坐標軸上或平行于坐標軸或垂直于坐標軸時,兩點間距離公式可簡化為或
已知點,,試求A,B兩點間的距離;
已知點A,B在平行于y軸的直線上,點A的縱坐標為5,點B的縱坐標為,試求A,B兩點間的距離;
已知點,,判斷線段AB,BC,AC中哪兩條是相等的?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列圖形中有大小不同的平行四邊形,第一幅圖中有1個平行四邊形,第二幅圖中有3個平行四邊形,第三幅圖中有5個平行四邊形,則第6幅和第7幅圖中合計有( )個平行四邊形
A.22B.24C.26D.28
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探索題:圖a是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖b的形狀拼成一個正方形.
(1)請用兩種不同的方法,求圖b中陰影部分的面積:
方法1: ; 方法2: ;
(2)觀察圖b,寫出代數(shù)式, , 之間的等量關(guān)系,并通過計算驗證;
(3)根據(jù)(2)題中的等量關(guān)系,解決如下問題:若, ,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com