【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A(1,2),B(0,4).

(1)求此函數(shù)的解析式.

(2)求原點(diǎn)到直線AB的距離.

【答案】(1)y=﹣2x+4;(2).

【解析】

(1)把A、B兩點(diǎn)坐標(biāo)代入y=kx+b中得到關(guān)于k、b的方程組,然后解方程組求出k、b即可得到一次函數(shù)解析式;

(2)根據(jù)一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,求出直線與x軸的交點(diǎn)C的坐標(biāo),然后利用勾股計(jì)算出AC的長,再利用面積法求原點(diǎn)到直線AB的距離.

(1)把A(1,2),B(0,4)代入y=kx+b,

,解得

所以一次函數(shù)解析式為y=﹣2x+4;

(2)由y=﹣2x+4可知,直線與x軸的交點(diǎn)C的坐標(biāo)為(2,0),

AC=,

設(shè)原點(diǎn)到直線AB的距離為h,

解得h=,

所以原點(diǎn)到直線AB的距離為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一圓錐的左視圖,根據(jù)圖中所標(biāo)數(shù)據(jù),圓錐側(cè)面展開圖的扇形圓心角的大小為( 。

A.90°
B.120°
C.135°
D.150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,AB=CD,點(diǎn)E、F在BC上,且BE=CF.
(1)求證:△ABE≌△DCF;
(2)試證明:以A、F、D、E為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)計(jì)算: ;
(2)先化簡,再求值:(x+1)(2x﹣1)﹣(x﹣3)2 , 其中x=﹣2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,弦AD⊥AB交BC于點(diǎn)E,過點(diǎn)B作⊙O的切線交DA的延長線于點(diǎn)F,且∠ABF=∠ABC.
(1)求證:AB=AC;
(2)若AD=4,cos∠ABF= ,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E為BC邊上的一點(diǎn),連結(jié)AE、BD且AE=AB.
(1)求證:∠ABE=∠EAD;
(2)若∠AEB=2∠ADB,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正八邊形ABCDEFGH中,四邊形BCFG的面積為20cm2 , 則正八邊形的面積為cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平面直角坐標(biāo)系中,直線y=kx+bx軸交于點(diǎn)A(6,0),與y軸交于點(diǎn)B,與直線y=2x交于點(diǎn)C(a,4).

(1)求點(diǎn)C的坐標(biāo)及直線AB的表達(dá)式;

(2)如圖2,在(1)的條件下,過點(diǎn)E作直線lx軸于點(diǎn)E,交直線y=2x于點(diǎn)F,交直線y=kx+b于點(diǎn)G,若點(diǎn)E的坐標(biāo)是(4,0).

①求CGF的面積;

②直線l上是否存在點(diǎn)P,使OP+BP的值最?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,說明理由;

(3)若(2)中的點(diǎn)Ex軸上的一個動點(diǎn),點(diǎn)E的橫坐標(biāo)為m(m>0),當(dāng)點(diǎn)Ex軸上運(yùn)動時,探究下列問題:

當(dāng)m取何值時,直線l上存在點(diǎn)Q,使得以A,C,Q為頂點(diǎn)的三角形與AOC全等?請直接寫出相應(yīng)的m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了估算河的寬度,我們可以在河對岸選定一個目標(biāo)點(diǎn)P , 在近岸取點(diǎn)QS , 使點(diǎn)P、QS共線且直線PS與河垂直,接著再過點(diǎn)S且與PS垂直的直線a上選擇適當(dāng)?shù)狞c(diǎn)T , 確定PT與過點(diǎn)Q且垂直PS的直線b的交點(diǎn)R . 如果測得QS=45m , ST=90m , QR=60m , 求河的寬度PQ

查看答案和解析>>

同步練習(xí)冊答案