【題目】如圖,在平行四邊形ABCD中,E為BC邊上的一點(diǎn),連結(jié)AE、BD且AE=AB.
(1)求證:∠ABE=∠EAD;
(2)若∠AEB=2∠ADB,求證:四邊形ABCD是菱形.
【答案】
(1)證明:在平行四邊形ABCD中,AD∥BC,
∴∠AEB=∠EAD,
∵AE=AB,
∴∠ABE=∠AEB,
∴∠ABE=∠EAD
(2)證明:∵AD∥BC,
∴∠ADB=∠DBE,
∵∠ABE=∠AEB,∠AEB=2∠ADB,
∴∠ABE=2∠ADB,
∴∠ABD=∠ABE﹣∠DBE=2∠ADB﹣∠ADB=∠ADB,
∴AB=AD,
又∵四邊形ABCD是平行四邊形,
∴四邊形ABCD是菱形
【解析】(1)根據(jù)平行四邊形的對(duì)邊互相平行可得AD∥BC,再根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠AEB=∠EAD,根據(jù)等邊對(duì)等角可得∠ABE=∠AEB,即可得證;(2)根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根據(jù)等角對(duì)等邊求出AB=AD,然后利用鄰邊相等的平行四邊形是菱形證明即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】由一些相同的小正方體搭成的幾何體的左視圖和俯視圖如圖所示,請(qǐng)?jiān)诰W(wǎng)格中涂出一種該幾何體的主視圖,且使該主視圖是軸對(duì)稱圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx(a>0)經(jīng)過(guò)原點(diǎn)O和點(diǎn)A(2,0).
(1)寫出拋物線的對(duì)稱軸與x軸的交點(diǎn)坐標(biāo);
(2)點(diǎn)(x1 , y1),(x2 , y2)在拋物線上,若x1<x2<1,比較y1 , y2的大小;
(3)點(diǎn)B(﹣1,2)在該拋物線上,點(diǎn)C與點(diǎn)B關(guān)于拋物線的對(duì)稱軸對(duì)稱,求直線AC的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,點(diǎn)D在邊AB上,連接CD,將線段CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至CE位置,連接AE.
(1)求證:AB⊥AE;
(2)若BC2=ADAB,求證:四邊形ADCE為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)A(1,2),B(0,4).
(1)求此函數(shù)的解析式.
(2)求原點(diǎn)到直線AB的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,若二次函數(shù)y= x2+bx+c的圖象與x軸交于A(﹣2,0),B(3,0)兩點(diǎn),點(diǎn)A關(guān)于正比例函數(shù)y= x的圖象的對(duì)稱點(diǎn)為C.
(1)求b、c的值;
(2)證明:點(diǎn)C在所求的二次函數(shù)的圖象上;
(3)如圖②,過(guò)點(diǎn)B作DB⊥x軸交正比例函數(shù)y= x的圖象于點(diǎn)D,連結(jié)AC,交正比例函數(shù)y= x的圖象于點(diǎn)E,連結(jié)AD、CD.如果動(dòng)點(diǎn)P從點(diǎn)A沿線段AD方向以每秒2個(gè)單位的速度向點(diǎn)D運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)D沿線段DC方向以每秒1個(gè)單位的速度向點(diǎn)C運(yùn)動(dòng).當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng),連結(jié)PQ、QE、PE.設(shè)運(yùn)動(dòng)時(shí)間為t秒,是否存在某一時(shí)刻,使PE平分∠APQ,同時(shí)QE平分∠PQC?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,DE平分∠ADC交AB于點(diǎn)E,BF平分∠ABC,交CD于點(diǎn)F.
(1)求證:DE=BF;
(2)連接EF,寫出圖中所有的全等三角形.(不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=ax2+bx﹣3(a,b是常數(shù))的圖象與x軸交于點(diǎn)A(﹣3,0)和點(diǎn)B(1,0),與y軸交于點(diǎn)C.動(dòng)直線y=t(t為常數(shù))與拋物線交于不同的兩點(diǎn)P、Q.
(1)求a和b的值;
(2)求t的取值范圍;
(3)若∠PCQ=90°,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D、E分別在線段AB、AC上且∠ABC=∠AED , 若DE=4,AE=5,BC=8,則AB的長(zhǎng)為( 。
A.
B.10
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com