【題目】有一種升降熨燙臺如圖1所示,其原理是通過改變兩根支撐桿夾角的度數來調整熨燙臺的高度.圖2是這種升降熨燙臺的平面示意圖.AB和CD是兩根相同長度的活動支撐桿,點O是它們的連接點,OA=OC,h(cm)表示熨燙臺的高度.
(1)如圖2﹣1.若AB=CD=110cm,∠AOC=120°,求h的值;
(2)愛動腦筋的小明發(fā)現,當家里這種升降熨燙臺的高度為120cm時,兩根支撐桿的夾角∠AOC是74°(如圖2﹣2).求該熨燙臺支撐桿AB的長度(結果精確到lcm).
(參考數據:sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)
科目:初中數學 來源: 題型:
【題目】如圖所示,直線與反比例函數的圖象交于點,,與坐標軸交于A、B兩點.
(1)求一次函數與反比例函數的解析式;
(2)觀察圖象,當時,直接寫出不等式的解集;
(3)將直線向下平移個單位,若直線與反比例函數的圖象有唯一交點,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,函數y=﹣x+5的圖象與函數y=(k<0)的圖象相交于點A,并與x軸交于點C,S△AOC=15.點D是線段AC上一點,CD:AC=2:3.
(1)求k的值;
(2)根據圖象,直接寫出當x<0時不等式>﹣x+5的解集;
(3)求△AOD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】四邊形具有不穩(wěn)定性,對于四條邊長確定的四邊形.當內角度數發(fā)生變化時,其形狀也會隨之改變.如圖,改變正方形ABCD的內角,正方形ABCD變?yōu)榱庑?/span>ABC′D′.若∠D′AB=30°,則菱形ABC′D′的面積與正方形ABCD的面積之比是( )
A.1B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC=2,BC=8,按下列步驟作圖:
①以點A為圓心,適當的長度為半徑作弧,分別交AB,AC于點E,F,再分別以點E,F為圓心,大于EF的長為半徑作弧相交于點H,作射線AH;
②分別以點A,B為圓心,大于AB的長為半徑作弧相交于點M,N,作直線MN,交射線AH于點O;
③以點O為圓心,線段OA長為半徑作圓.
則⊙O的半徑為( 。
A.2B.10C.4D.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在籃球比賽中,東東投出的球在點A處反彈,反彈后球運動的路線為拋物線的一部分(如圖1所示建立直角坐標系),拋物線頂點為點B.
(1)求該拋物線的函數表達式.
(2)當球運動到點C時被東東搶到,CD⊥x軸于點D,CD=2.6m.
①求OD的長.
②東東搶到球后,因遭對方防守無法投籃,他在點D處垂直起跳傳球,想將球沿直線快速傳給隊友華華,目標為華華的接球點E(4,1.3).東東起跳后所持球離地面高度h1(m)(傳球前)與東東起跳后時間t(s)滿足函數關系式h1=﹣2(t﹣0.5)2+2.7(0≤t≤1);小戴在點F(1.5,0)處攔截,他比東東晚0.3s垂直起跳,其攔截高度h2(m)與東東起跳后時間t(s)的函數關系如圖2所示(其中兩條拋物線的形狀相同).東東的直線傳球能否越過小戴的攔截傳到點E?若能,東東應在起跳后什么時間范圍內傳球?若不能,請說明理由(直線傳球過程中球運動時間忽略不計).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將矩形繞點順時針旋轉得到矩形,點的對應點分別為
(1)當點落在上時
①如圖1,若,求證:
②如圖2,交于點.若,求證:;
(2)若,
①如圖3,當過點C時,則的長=_____.
②當時,作,繞點轉動,當直線經過時,直線交邊于,的值=______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系中,正方形ABCD繞點A(0,6)旋轉,當點B落在x軸上時,點C剛好落在反比例函數(k≠0,x>0)的圖像上.已知sin∠OAB=.
(1)求反比例函數的表達式;
(2)反比例函數的圖像是否經過AD邊的中點,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com