【題目】△ABC在如圖所示的平面直角坐標(biāo)系中,將△ABC向右平移3個單位長度后得△A1B1C1 , 再將△A1B1C1繞點O旋轉(zhuǎn)180°后得到△A2B2C2 . 則下列說法正確的是(

A.A1的坐標(biāo)為(3,1)
B. =3
C.B2C=2
D.∠AC2O=45°

【答案】D
【解析】解:如圖,A、A1的坐標(biāo)為(1,3),故錯誤B、S四邊形ABB1A1=3×2=6,故錯誤;
C、B2C= = ,故錯誤;
D、變化后,C2的坐標(biāo)為(﹣2,﹣2),而A(﹣2,3),由圖可知,∠AC2O=45°,故正確.
故選:D.

【考點精析】利用平移的性質(zhì)和旋轉(zhuǎn)的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知①經(jīng)過平移之后的圖形與原來的圖形的對應(yīng)線段平行(或在同一直線上)且相等,對應(yīng)角相等,圖形的形狀與大小都沒有發(fā)生變化;②經(jīng)過平移后,對應(yīng)點所連的線段平行(或在同一直線上)且相等;①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

通過整式運算一章的學(xué)習(xí),我們發(fā)現(xiàn)要驗證一個結(jié)論的正確性可以有兩種方法:

例如:要驗證結(jié)論

方法1:幾何圖形驗證:如下圖,我們可以將一個邊長為(a+b)的正方形上裁去一個邊長為(a-b)的小正方形則剩余圖形的面積為4ab,驗證該結(jié)論正確。

方法2:代數(shù)法驗證:等式左邊=,

所以,左邊=右邊,結(jié)論成立。

觀察下列各式:

(1)按規(guī)律,請寫出第n個等式________________;

(2)試分別用兩種方法驗證這個結(jié)論的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進(jìn)枇杷20噸,桃子12噸.現(xiàn)計劃租用甲、乙兩種貨車共8輛將這批水果運回,已知一輛甲種貨車可裝枇杷4噸和桃子1噸,一輛乙種貨車可裝枇杷和桃子各2噸.

1)如何安排甲、乙兩種貨車可一次性地運到?有幾種方案?

2)若甲種貨車每輛要付運輸費300元,乙種貨車每輛要付運輸費240元,則果商場應(yīng)選擇哪種方案,使運輸費最少?最少運費是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:(m+1)(m﹣9)+8m=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,四邊形ABCD是正方形,∠PAQ=45°,將∠PAQ繞著正方形的頂點A旋轉(zhuǎn),使它與正方形ABCD的兩個外角∠EBC和∠FDC的平分線分別交于點MN,連接MN

(1)求證:△ABM∽△NDA

(2)連接BD,當(dāng)∠BAM的度數(shù)為多少時,四邊形BMND為矩形,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,用點A(3,1)表示放置3個胡蘿卜、1棵青菜,B(2,3)表示放置2個胡蘿卜、3棵青菜.

(1)寫出其他各點C,D,E,F所表示的意義;

(2)若一只兔子從A到達(dá)B(順著方格線走),有以下幾條路可以選擇:A→C→D→B;A→F→D→B;A→F→E→B.則走哪條路吃到的胡蘿卜最多?走哪條路吃到的青菜最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=(x+122的對稱軸x_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,∠C=30°,CD=2 ,則陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小軍做了兩個正方體紙盒,已知第一個正方體紙盒棱長為3厘米,第二個正方體紙盒比第一個紙盒體積大189立方厘米,試求第二個正方體紙盒的棱長.

查看答案和解析>>

同步練習(xí)冊答案