【題目】如圖,某數(shù)學(xué)興趣小組在活動課上測量學(xué)校旗桿高度.已知小明的眼睛與地面的距離AB=1.7m,看旗桿頂部M的仰角為45°;小紅的眼睛與地面的距離CD=1.5m,看旗桿頂部M的仰角為30°.兩人相距28米且位于旗桿兩側(cè)(點B、N、D在同一條直線上).請求出旗桿MN的高度.(參考數(shù)據(jù): ≈1.4, ≈1.7,結(jié)果保留整數(shù))

【答案】解:過點A作AE⊥MN于E,過點C作CF⊥MN于F,

則EF=AB﹣CD=1.7﹣1.5=0.2(m),
在Rt△AEM中,∵∠AEM=90°,∠MAE=45°,
∴AE=ME.
設(shè)AE=ME=xm,則MF=(x+0.2)m,F(xiàn)C=(28﹣x)m.
在Rt△MFC中,∵∠MFC=90°,∠MCF=30°,
∴MF=CFtan∠MCF,
∴x+0.2= (28﹣x),
解得x≈9.7,
∴MN=ME+EN=9.7+1.7≈11米.
答:旗桿MN的高度約為11米.
【解析】過點A作AE⊥MN于E,過點C作CF⊥MN于F,則EF=0.2m.由△AEM是等腰直角三角形得出AE=ME,設(shè)AE=ME=xm,則MF=(x+0.2)m,F(xiàn)C=(28﹣x)m.在Rt△MFC中,由tan∠MCF的值,得出關(guān)于x的方程,解方程求出x的值,即可求出則MN的長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,CD為AB邊上的中線,點E、F分別在線段CD、AD上,且 .點G是EF的中點,射線DG交AC于點H.

(1)求證:△DFE∽△DAC;
(2)請你判斷點H是否為AC的中點?并說明理由;
(3)若將△ADH繞點D順時針旋轉(zhuǎn)至△A′DH′,使射線DH′與射線CB相交于點M(不與B,C重合.圖2是旋轉(zhuǎn)后的一種情形),請?zhí)骄俊螧MD與∠BDA′之間所滿足的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系第一象限內(nèi),直線y=x與直線y=2x的內(nèi)部作等腰Rt△ABC,是∠ABC=90°,邊BC∥x軸,AB∥y軸,點A(1,1)在直線y=x上,點C在直線y=2x上:CB的延長線交直線y=x于點A1 , 作等腰Rt△A1B1C1 , 是∠A1B1C1=90°,B1C1∥x軸,A1B1∥y軸,點C1在直線y=2x上…按此規(guī)律,則等腰Rt△AnBnCn的腰長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,拋物線y=﹣x2+bx+3與x軸交于點A(1,0)和點B,與y軸交于點C.

(1)求拋物線的解析式.
(2)直線y=kx+3k經(jīng)過點B,與y軸的負半軸交于點D,點P為第二象限內(nèi)拋物線上一點,連接PD,射線PD繞點P順時針旋轉(zhuǎn)與線段BD交于點E,且∠EPD=2∠PDC,∠EPD的平分線交線段BD于點H,∠BEP+∠BDP=90°
①若四邊形PHDC是平行四邊形,求點P的坐標;
②過點E作EF⊥PD,交PD于點G,交y軸于點F,已知PF=3 ,求直線PF的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王華、張偉兩位同學(xué)分別將自己10次數(shù)學(xué)自我檢測的成績繪制成如下統(tǒng)計圖:

(1)根據(jù)圖中提供的數(shù)據(jù)列出如下統(tǒng)計表:

平均成績(分)

中位數(shù)(分)

眾數(shù)(分)

方差(S2

王華

80

b

80

d

張偉

a

85

c

260

則a= , b= , c= , d= ,
(2)將90分以上(含90分)的成績視為優(yōu)秀,則優(yōu)秀率高的是
(3)現(xiàn)在要從這兩個同學(xué)選一位去參加數(shù)學(xué)競賽,你可以根據(jù)以上的數(shù)據(jù)給老師哪些建議?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲騎摩托車從A地去B地,乙開汽車從B地去A地,同時出發(fā),勻速行駛,各自到達終點后停止,設(shè)甲、乙兩人間距離為s(單位:千米),甲行駛的時間為t(單位:小時),s與t之間的函數(shù)關(guān)系如圖所示,有下列結(jié)論:
①出發(fā)1小時時,甲、乙在途中相遇;
②出發(fā)1.5小時時,乙比甲多行駛了60千米;
③出發(fā)3小時時,甲、乙同時到達終點;
④甲的速度是乙速度的一半.
其中,正確結(jié)論的個數(shù)是( 。

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線PA切⊙O于點A,連接PO.

(1)在PO的上方作射線PC,使∠OPC=∠OPA(用尺規(guī)在原圖中作,保留痕跡,不寫作法),并證明:PC是⊙O的切線;
(2)在(1)的條件下,若PC切⊙O于點B,AB=AP=4,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=5,AD=12,將矩形ABCD沿直線l向右翻滾兩次至如圖所示位置,則點B所經(jīng)過的路線長是 (結(jié)果不取近似值).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有三張反面朝上的撲克牌:紅桃2、紅桃3、黑桃x(1≤x≤13且x為奇數(shù)或偶數(shù)).把牌洗勻后第一次抽取一張,記好花色和數(shù)字后將牌放回,重新洗勻第二次再抽取一張.
(1)求兩次抽得相同花色的概率;
(2)當甲選擇x為奇數(shù),乙選擇x為偶數(shù)時,他們兩次抽得的數(shù)字和是奇數(shù)的可能性大小一樣嗎?請說明理由.(提示:三張撲克牌可以分別簡記為紅2、紅3、黑x)

查看答案和解析>>

同步練習(xí)冊答案