【題目】已知a,b為有理數(shù),且a,b不為0,則定義有理數(shù)對(duì)(a,b)的“真誠(chéng)值”為d(a,b)=,如有理數(shù)對(duì)(3,2)的“真誠(chéng)值”為d(3,2)=23﹣10=﹣2,有理數(shù)對(duì)(﹣2,5)的“真誠(chéng)值”為d(﹣2,5)=(﹣2)5﹣10=﹣42.
(1)求有理數(shù)對(duì)(﹣3,2)與(1,2)的“真誠(chéng)值”;
(2)求證:有理數(shù)對(duì)(a,b)與(b,a)的“真誠(chéng)值”相等;
(3)若(a,2)的“真誠(chéng)值”的絕對(duì)值為|d(a,2)|,若|d(a,2)|=6,求a的值.
【答案】(1)d(﹣3,2)的“真誠(chéng)值”為﹣1,d(1,2)的“真誠(chéng)值”為﹣9;(2)見解析;(3)見解析.
【解析】
(1)根據(jù)題目中的新定義,可以求得有理數(shù)對(duì)(﹣3,2)與(1,2)的“真誠(chéng)值”;
(2)根據(jù)題意分類討論當(dāng)a>b時(shí)和當(dāng)a<b時(shí),再結(jié)合新定義進(jìn)行證明結(jié)論;
(3)由|d(a,2)|=6,得到d(a,2)=±6,分d(a,2)=6和d(a,2)=﹣6時(shí)進(jìn)行討論即可得到答案.
(1)d(﹣3,2)=(﹣3)2﹣10=9﹣10=﹣1,d(1,2)=12﹣10=1﹣10=﹣9;
(2)證明:由題知:
ⅰ當(dāng)a>b時(shí),因?yàn)?/span>d(a,b)=ba﹣10,d(b,a)=ba﹣10,
所以d(a,b)=d(b,a);
ⅱ當(dāng)a<b時(shí),因?yàn)?/span>d(a,b)=ab﹣10,(b,a)=ab﹣10,
所以d(a,b)=d(b,a);
綜合所得:d(a,b)=d(b,a);
(3)因?yàn)?/span>|d(a,2)|=6,所以d(a,2)=±6,
ⅰ、若d(a,2)=6,
當(dāng)a>2 時(shí),2a﹣10=6,2a=16,得a=4成立;
當(dāng)a<2 時(shí),a2﹣10=6,a2=16,得a=±4,
因?yàn)?/span>a<2,所以a=﹣4;
ⅱ、若d(a,2)=﹣6時(shí)
當(dāng)a>2 時(shí),2a﹣10=﹣6,2a=4,得a=2不成立;
當(dāng)a<2 時(shí),a2﹣10=﹣6,a2=4,得a=±2,
因?yàn)?/span>a<2,所以a=﹣2;
由上可得,a=﹣2或±4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,二次函數(shù)y=ax2+bx的圖象過點(diǎn)A(﹣1,3),頂點(diǎn)B的橫坐標(biāo)為1.
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)點(diǎn)P在該二次函數(shù)的圖象上,點(diǎn)Q在x軸上,若以A、B、P、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo);
(3)如圖3,一次函數(shù)y=kx(k>0)的圖象與該二次函數(shù)的圖象交于O、C兩點(diǎn),點(diǎn)T為該二次函數(shù)圖象上位于直線OC下方的動(dòng)點(diǎn),過點(diǎn)T作直線TM⊥OC,垂足為點(diǎn)M,且M在線段OC上(不與O、C重合),過點(diǎn)T作直線TN∥y軸交OC于點(diǎn)N.若在點(diǎn)T運(yùn)動(dòng)的過程中, 為常數(shù),試確定k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:數(shù)a,b,c 在數(shù)軸上的對(duì)應(yīng)點(diǎn)如下圖所示,
(1)在數(shù)軸上表示﹣a;
(2)比較大。ㄌ睢埃肌被颉埃尽被颉埃健保篴+b 0,﹣3c 0,c﹣a 0;
(3)化簡(jiǎn)|a+b|﹣|﹣3c|﹣|c﹣a|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D為AB邊上一點(diǎn),E為CD中點(diǎn),AC=,∠ABC=30°,∠A=∠BED=45°,則BD的長(zhǎng)為( 。
A. B. +1﹣ C. ﹣ D. ﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上每相鄰兩點(diǎn)的相距一個(gè)單位長(zhǎng)度,點(diǎn)A、B、C、D是這些點(diǎn)中的四個(gè),且對(duì)應(yīng)的位置如圖所示,它們對(duì)應(yīng)的數(shù)分別是a,b,c,d.
(1)當(dāng)ab=﹣1,則d= .
(2)若|d﹣2a|=7,求點(diǎn)C對(duì)應(yīng)的數(shù).
(3)若abcd<0,a+b>0,化簡(jiǎn)|a﹣b|﹣|b+c﹣5|﹣|c﹣5|﹣|d﹣a|+|8﹣d|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有三個(gè)有理數(shù)x,y,z,若x=,且x與y互為相反數(shù),y是z的倒數(shù).
(1)當(dāng)n為奇數(shù)時(shí),你能求出x,y,z這三個(gè)數(shù)嗎?當(dāng)n為偶數(shù)時(shí),你能求出x,y,z,這三個(gè)數(shù)嗎?若能,請(qǐng)計(jì)算并寫出結(jié)果;若不能,請(qǐng)說明理由.
(2)根據(jù)(1)的結(jié)果計(jì)算:xy﹣yn﹣(y﹣z)2019的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,甲、乙兩塊邊長(zhǎng)為a米(a>1)的正方形田地,甲地修了兩條互相垂直的寬為1米的通道,乙地正中間修了邊長(zhǎng)為1米的蓄水池,甲乙兩田地的剩余地方全部種植小麥,一年后收獲小麥m千克.(m>0)
(1)甲地的小麥種植面積為 平方米,乙地的小麥種植面積為 平方米;
(2)甲乙兩地小麥種植面積較小的是 地;
(3)若高的單位面積產(chǎn)量是低的單位面積產(chǎn)量的倍,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列方程變形中,正確的是( )
A.方程3x-2=2x+1,移項(xiàng),得3x-2x=1-2
B.方程3-x=2-5(x-1),去括號(hào),得3-x=2-5x-1;
C.方程-75x=76,方程兩邊同除以-75,得x=-
D.方程=1+,去分母,得2(2x-1)=6+3(x-3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,矩形ABCD中,AE平分交BC于E,,則下面的結(jié)論:①是等邊三角形;②;③;④,其中正確結(jié)論有( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com