【題目】某電視臺為了解本地區(qū)電視節(jié)目的收視情況,對部分市民開展了“你最喜愛的電視節(jié)目”的問卷調(diào)查(每人只填寫一項),根據(jù)收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計圖(如圖所示),根據(jù)要求回答下列問題:

1)本次問卷調(diào)查共調(diào)查了________名觀眾;圖②中最喜愛“體育節(jié)目”的扇形圓心角度數(shù)是________

2)補全圖①中的條形統(tǒng)計圖;

3)現(xiàn)有最喜愛“新聞節(jié)目”(記為),“體育節(jié)目”(記為),“綜藝節(jié)目”(記為),“科普節(jié)目”(記為)的觀眾各一名,電視臺要從四人中隨機(jī)抽取兩人參加聯(lián)誼活動,請用列表或畫樹狀圖的方法,求出恰好抽到最喜愛“”和“”兩位觀眾的概率.

【答案】1200;126°;(2)見解析;(3

【解析】

1)用最喜愛“科普節(jié)目”的人數(shù)除以它所占的百分比即可得到調(diào)查的總?cè)藬?shù),再算出最喜愛體育節(jié)目的人數(shù)及所占的百分比,然后用360度乘最喜愛“體育節(jié)目”的人數(shù)所占的百分比即可得到“體育節(jié)目”在扇形統(tǒng)計圖中所對應(yīng)的圓心角的度數(shù);

2)由(1)求得的最喜愛“體育節(jié)目”的人數(shù)即可補全條形統(tǒng)計圖;

3)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出抽到最喜愛“B”和“C”兩位觀眾的結(jié)果數(shù),然后根據(jù)概率公式求解.

解:(1)本次問卷調(diào)查的總?cè)藬?shù)為:45÷22.5%=200(人),

∴最喜愛“體育節(jié)目”類節(jié)目的人數(shù)為200(50+35+45)=70(人),

則圖②中最喜愛“體育節(jié)目”的人數(shù)占調(diào)查總?cè)藬?shù)的百分比為70÷200×100%=35%

∴“體育節(jié)目”在扇形統(tǒng)計圖中所對應(yīng)的圓心角的度數(shù)為,

故答案為:200;;

2)由(1)得:最喜愛“體育節(jié)目”類節(jié)目的人數(shù)為70人,

補全圖①中的條形統(tǒng)計圖如圖①所示:

3)根據(jù)題意可畫樹狀圖為:

共有12種等可能的結(jié)果數(shù),恰好抽到最喜愛BC兩位觀眾的結(jié)果數(shù)為2,

所以P(恰好抽到最喜愛BC兩位觀眾)=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】201853日,中國科學(xué)院在上海發(fā)布了中國首款人工智能芯片:寒武紀(jì)(MLU100),該芯片在平衡模式下的等效理論峰值速度達(dá)每秒128 000 000 000 000次定點運算,將數(shù)

128 000 000 000 000用科學(xué)計數(shù)法表示為(

A. 1.281014 B. 1.2810-14 C. 1281012 D. 0.1281011

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點D.

(1)求證:BE=CF.

(2)當(dāng)四邊形ACDE為菱形時,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在一次數(shù)學(xué)興趣小組活動中,對一個數(shù)學(xué)問題作如下探究:

問題情境:(1)如圖1,四邊形中,,點邊的中點,連接并延長交的延長線于點,求證:;(表示面積)

問題遷移:(2)如圖2:在已知銳角內(nèi)有一個定點.過點任意作一條直線分別交射線于點.小明將直線繞著點旋轉(zhuǎn)的過程中發(fā)現(xiàn),的面積存在最小值,請問當(dāng)直線在什么位置時,的面積最小,并說明理由.

實際應(yīng)用:(3)如圖3,若在道路之間有一村莊發(fā)生疫情,防疫部門計劃以公路和經(jīng)過防疫站的一條直線為隔離線,建立個面積最小的三角形隔離區(qū),若測得試求的面積.(結(jié)果保留根號)(參考數(shù)據(jù):)

拓展延伸:(4)如圖4,在平面直角坐標(biāo)系中,為坐標(biāo)原點,點的坐標(biāo)分別為,過點的直線與四邊形一組對邊相交,將四邊形分成兩個四邊形,求其中以點為頂點的四邊形面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線ymx26mx+9m+1m0).

1)求拋物線的頂點坐標(biāo);

2)若拋物線與x軸的兩個交點分別為AB點(點A在點B的左側(cè)),且AB4,求m的值.

3)已知四個點C22)、D2,0)、E5,﹣2)、F56),若拋物線與線段CD和線段EF都沒有公共點,請直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定:sin﹣x=﹣sinx,cos﹣x=cosx,sinx+y=sinxcosy+cosxsiny

據(jù)此判斷下列等式成立的是 (寫出所有正確的序號)

①cos﹣60°=﹣

②sin75°=;

③sin2x=2sinxcosx;

④sinx﹣y=sinxcosy﹣cosxsiny

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB繞著點A逆時針方向旋轉(zhuǎn)120°得到線段AC,點B對應(yīng)點C,在∠BAC的內(nèi)部有一點P,PA8,PB4PC4,則線段AB的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角尺按如圖①方式拼接:含30°角的三角尺的長直角邊與含45°角的三角尺的斜邊恰好重合(在RtABC中,∠ACB90°,∠BAC30°;在RtACD中,∠ADC90°DAC45°)已知AB2PAC上的一個動點.

1)當(dāng)PDBC時,求∠PDA的度數(shù);

2)如圖②,若ECD的中點,求DEP周長的最小值;

3)如圖③,當(dāng)DP平分∠ADC時,在ABC內(nèi)存在一點Q,使得∠DQC=∠DPC,且CQ,求PQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,AD=BD,EAB的中點,FCD上一點,連接EFBDG

1)如圖1,若DF=DG=2AB=8,求EF的長;

2)如圖2,∠ADB=90°,點P為平行四邊形ABCD外部一點,且AP=AD,連接BP、DP、EP,DPEF于點Q,若BPDP,EFEP,求證:DQ=PQ

查看答案和解析>>

同步練習(xí)冊答案