【題目】如圖,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)B(4,0),C(0,﹣2),對(duì)稱(chēng)軸為直線x=1,與x軸的另一個(gè)交點(diǎn)為點(diǎn)A.
(1)求拋物線的解析式;
(2)點(diǎn)M從點(diǎn)A出發(fā),沿AC向點(diǎn)C運(yùn)動(dòng),速度為1個(gè)單位長(zhǎng)度/秒,同時(shí)點(diǎn)N從點(diǎn)B出發(fā),沿BA向點(diǎn)A運(yùn)動(dòng),速度為2個(gè)單位長(zhǎng)度/秒,當(dāng)點(diǎn)M、N有一點(diǎn)到達(dá)終點(diǎn)時(shí),運(yùn)動(dòng)停止,連接MN,設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),AMN的面積S最大,并求出S的最大值;
(3)點(diǎn)P在x軸上,點(diǎn)Q在拋物線上,是否存在點(diǎn)P、Q,使得以點(diǎn)P、Q、B、C為頂點(diǎn)的四邊形是平行四邊形,若存在,直接寫(xiě)出所有符合條件的點(diǎn)P坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)當(dāng)時(shí),S最大值為;(3)存在,P1(﹣3+,0),P2(﹣3﹣,0),P3(6,0),P4(2,0)
【解析】
(1)利用待定系數(shù)法確定函數(shù)解析式;
(2)由拋物線的對(duì)稱(chēng)性質(zhì)求得A(-2,0),則AB=6;當(dāng)點(diǎn)N運(yùn)動(dòng)t秒時(shí),BN=2t,則AN=6-2t,過(guò)點(diǎn)M作MD⊥x軸于點(diǎn)D,構(gòu)造直角三角形,由三角形的面積公式列出函數(shù)關(guān)系式,利用配方法求得最大值;
(3)需要分三種情況討論,用平移的知識(shí)先求出點(diǎn)Q的橫坐標(biāo),然后推出點(diǎn)P的坐標(biāo).
(1)依題意,將B(4,0),C(0,﹣2),對(duì)稱(chēng)軸為直線x=1,代入拋物線解析式,
得,
解得:,
∴拋物線的解析式為:;
(2)∵對(duì)稱(chēng)軸為直線x=1,B(4,0).
∴A(﹣2,0),則AB=6,
當(dāng)點(diǎn)N運(yùn)動(dòng)t秒時(shí),BN=2t,則AN=6﹣2t,
如圖1,過(guò)點(diǎn)M作MD⊥x軸于點(diǎn)D.
∵OA=OC=2,
∴△OAC是等腰直角三角形,
∴∠OAC=45°.
又∵DM⊥OA,
∴△DAM是等腰直角三角形,AD=DM,
當(dāng)點(diǎn)M運(yùn)動(dòng)t秒時(shí),AM=t,
∴MD2+AD2=AM2=t2,
∴DM=,
∴,
∵,
∴由二次函數(shù)的圖象及性質(zhì)可知,當(dāng)時(shí),S最大值為;
(3)存在,理由如下:
①當(dāng)四邊形CBQP為平行四邊形時(shí),CB與PQ平行且相等,
∵B(4,0),C(0,﹣2),
∴yB﹣yC=yQ﹣yP=2,xB﹣xC=xQ﹣xP=4,
∵yP=0,
∴yQ=2,
將y=2代入,
得 x1=,x2=,
∴當(dāng)xQ=時(shí),xP=;當(dāng)xQ=時(shí),xP=,
∴P1(,0),P2(,0);
②當(dāng)四邊形CQPB為平行四邊形時(shí),BP與CQ平行且相等,
∵yP=yB=0,
∴yQ=yC=﹣2,
將y=﹣2代入,
得 x1=0(舍去),x2=2,
∴xQ=2時(shí),
∴xP﹣xB=xQ﹣xC=2,
∴xP=6,
∴P3(6,0);
③當(dāng)四邊形CQBP為平行四邊形時(shí),BP與CQ平行且相等,
由②知,xQ=2,
∴xB﹣xP=xQ﹣xC=2,
∴xP=2,
∴P4(2,0);
綜上所述,存在滿足條件的點(diǎn)P有4個(gè),分別是P1(﹣3+,0),P2(﹣3﹣,0),P3(6,0),P4(2,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中(如圖),已知拋物線經(jīng)過(guò)點(diǎn)和,其頂點(diǎn)為C.
(1)求拋物線的解析式和頂點(diǎn)C的坐標(biāo);
(2)我們把坐標(biāo)為(n,m)的點(diǎn)叫做坐標(biāo)為(m,n)的點(diǎn)的反射點(diǎn),已知點(diǎn)M在這條拋物線上,它的反射點(diǎn)在拋物線的對(duì)稱(chēng)軸上,求點(diǎn)M的坐標(biāo);
(3)點(diǎn)P是拋物線在第一象限部分上的一點(diǎn),如果∠POA=∠ACB,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形的點(diǎn)坐標(biāo)為,點(diǎn)在軸上,點(diǎn)在軸上.點(diǎn)是邊上的動(dòng)點(diǎn),連接,作點(diǎn)關(guān)于線段的對(duì)稱(chēng)點(diǎn).已知一條拋物線經(jīng)過(guò)三點(diǎn),且點(diǎn)恰好是拋物線的頂點(diǎn),則的值為()
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】王老師為了解同學(xué)們對(duì)金庸武俠小說(shuō)的閱讀情況,隨機(jī)對(duì)初三年級(jí)的部分同學(xué)進(jìn)行調(diào)查,將調(diào)查結(jié)果分成以下五類(lèi):A:看過(guò)0~3本,B:看過(guò)4~6本,C:看過(guò)7~9本,D:看過(guò)10~12本,E:看過(guò)13~15本.并根據(jù)調(diào)查結(jié)果繪制了如圖1、圖2兩幅不完整的統(tǒng)計(jì)圖.
(1)圖2中的a = ,D所對(duì)的圓心角度數(shù)為 °;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)本次調(diào)查中E類(lèi)有2男1女,王老師想從中抽取2名同學(xué)分別撰寫(xiě)一篇讀書(shū)筆記.請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求所抽取的兩名學(xué)生恰好是一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E是AD邊上一點(diǎn),AE:ED=1:2,連接AC、BE交于點(diǎn)F.若S△AEF=1,則S四邊形CDEF=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一次函數(shù)y=k1x+8的圖像與坐標(biāo)軸分別相較于點(diǎn)A,B與反比例y=函數(shù)的圖像相交于C,D.過(guò)點(diǎn)C作CE⊥y軸,垂足為E.且CE=2.
(1)求4k1-k2的值;
(2)若CD=2AC,求反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,雙曲線與直線相交于,點(diǎn)P是x軸上一動(dòng)點(diǎn).
(1)求雙曲線與直線的解析式;
(2)當(dāng)時(shí),直接寫(xiě)出x的取值范圍;
(3)當(dāng)是等腰三角形時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB為直徑,作OD⊥AB交AC于點(diǎn)D,延長(zhǎng)BC,OD交于點(diǎn)F,過(guò)點(diǎn)C作⊙O的切線CE,交OF于點(diǎn)E.
(1)求證:EC=ED;
(2)如果OA=4,EF=3,求弦AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,有一直徑為100米的摩天輪,其最高點(diǎn)距離地面高度為110米,該摩天輪勻速轉(zhuǎn)動(dòng)(吊艙每分鐘轉(zhuǎn)過(guò)的角度相同)一周的時(shí)間為24分鐘.
(1)如圖2,某游客所在吊艙從最低點(diǎn)P出發(fā),3分鐘后到達(dá)A處,此時(shí)該游客離地面高度約為多少米;(精確到整數(shù))
(2)該游客在摩天輪轉(zhuǎn)動(dòng)一周的過(guò)程中,有多少時(shí)間距離地面不低于85米?(參考數(shù)據(jù):≈1.41,=1.73)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com