【題目】如圖,在等腰直角中, ,的角平分線與的外角平分線交于點(diǎn),分別交和的延長線于點(diǎn),過點(diǎn)作交的延長線于點(diǎn),交的延長線于點(diǎn),則下列結(jié)論:①;②;③為等腰直角三角形:④.其中正確的結(jié)論有__________.
【答案】①②③
【解析】
利用等腰直角三角形的內(nèi)外角平分線的性質(zhì)得到∠AFB=45°,再利用FH⊥AD易證△FAB≌△FGB,△DFG≌△HFA,從而進(jìn)行判定.
∵BE是∠ABC的角平分線,AD是∠BAC外角平分線,
∴∠AFB=∠ACB=45°,故①正確;
∵FH⊥AD,
∴∠AFB=∠BFG=45°,
又∵FB=FB,∠ABF=∠FBG,
∴△FAB≌△FGB,
∴FG=FA,
利用角的計(jì)算可知,∠FAE=∠FEA=67.5°,
∴FA=FE,
∴FE=FG,故②正確;
∵∠DFG=∠HFA=90°,
FG=FA,易證∠FGD=∠FAH,
∴△DFG≌△HFA,
∴DF=FH,
∴△DFH為等腰直角三角形,故③正確;
由△DFG≌△HFA可得DG=AH,
由△FAB≌△FGB可得BG=AB,
∵BD=DG+GB,BD=AH+AB,故④錯誤,
故答案為:①②③.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】體育課上,老師為了解女學(xué)生定點(diǎn)投籃的情況,隨機(jī)抽取8名女生進(jìn)行每人4次定點(diǎn)投籃的測試,進(jìn)球數(shù)的統(tǒng)計(jì)如圖所示.
(1)求女生進(jìn)球數(shù)的平均數(shù)、中位數(shù);
(2)投球4次,進(jìn)球3個以上(含3個)為優(yōu)秀,全校有女生1200人,估計(jì)為“優(yōu)秀”等級的女生約為多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“蘭州中山橋“位于蘭州濱河路中段白塔山下、金城關(guān)前,是黃河上第一座真正意義上的橋梁,有“天下黃河第一橋“之美譽(yù).它像一部史詩,記載著蘭州古往今來歷史的變遷.橋上飛架了5座等高的弧形鋼架拱橋. 小蕓和小剛分別在橋面上的A,B兩處,準(zhǔn)備測量其中一座弧形鋼架拱梁頂部C處到橋面的距離AB=20m,小蕓在A處測得∠CAB=36°,小剛在B處測得∠CBA=43°,求弧形鋼架拱梁頂部C處到橋面的距離.(結(jié)果精確到0.1m)(參考數(shù)據(jù)sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一張三角形紙片,其中,,,現(xiàn)小林將紙片做三次折疊:第一次使點(diǎn)落在處;將紙片展平做第二次折疊,使點(diǎn)若在處;再將紙片展平做第三次折疊,使點(diǎn)落在處,這三次折疊的折痕長依次記為,則的大小關(guān)系是(從大到小)__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,長方形紙片ABCD的長AD=9cm,寬AB=3cm,將其折疊,使點(diǎn)D與點(diǎn)B重合.
求:(1)折疊后DE的長;(2)以折痕EF為邊的正方形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從-2,-1,1,2,3這五個數(shù)中隨機(jī)抽取一數(shù),作為函數(shù)y=mx2+2mx+2中的m的值,若能使函數(shù)與x軸有兩個不同的交點(diǎn)A、B,與y軸的交點(diǎn)為C,且△ABC的面積大于的概率為:_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只箱子里共有3個球,其中2個白球,1個紅球,它們除顏色外均相同。
(1)從箱子中任意摸出一個球是白球的概率是多少?
(2)從箱子中任意摸出一個球,不將它放回箱子,攪勻后再摸出一個球,求兩次摸出球的都是白球的概率,并畫出樹狀圖。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個口袋中裝有4個完成相同的小球,把它們分別標(biāo)號1、2、3、4,小明從中隨機(jī)地摸出一個球.
(1)直接寫出小明摸出的球標(biāo)號為4的概率;
(2)若小明摸到的球不放回,記小明摸出球的標(biāo)號為x,然后由小強(qiáng)再隨機(jī)摸出一個球記為y.小明和小強(qiáng)在此基礎(chǔ)上共同協(xié)商一個游戲規(guī)則:當(dāng)x>y時,小明獲勝,否則小強(qiáng)獲勝.請問他們制定的游戲規(guī)則公平嗎?請用樹狀圖或列表法說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 是等邊三角形,D 為 CB 延長線上一點(diǎn),E 為 BC 延長線上點(diǎn).
(1)當(dāng) BD、BC 和 CE 滿足什么條件時,△ADB∽△EAC?
(2)當(dāng)△ADB∽△EAC 時,求∠DAE 的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com