【題目】如圖,平行四邊形ABCD中,∠B=30°,AB≠BC ,將△ABC沿AC翻折至△AB′C ,連結(jié)B ′D. 若 ,∠AB ′D=75°,則BC=

【答案】
【解析】解:如圖:

∵四邊形ABCD是平行四邊形,

∴AB=CD,BC=AD,∠B=∠ADC,

∵將△ABC沿AC翻折至△AB′C,

∴AB′=AB,B′C=BC,∠AB′C=∠B,

∴AB′=CD,B′C=AD,∠AB′C=∠ADC,

在△AB′C和△CAD中,

,

∴△AB′C≌△CAD(SAS),

∴∠ACB′=∠CAD,

設(shè)AD、B′C相交于E,

∴AE=CE,

∴△ACE是等腰三角形,

即△AB′C與ABCD重疊部分的圖形是等腰三角形;

∵B′C=AD,AE=CE,

∴B′E=DE,

∴∠CB′D=∠ADB′,

∵∠AEC=∠B′ED,∠ACB′=∠CAD,

∴∠ADB′=∠DAC,

∴B′D∥AC;

∵在ABCD中,∠B=30°,將△ABC沿AC翻折至△AB′C,

∴∠AB′C=30°,

∵∠AB′D=75°,

∴∠CB′D=45°,

∵B′D∥AC,

∴∠ACB′=∠CB′D=45°,

∵∠ACB=∠ACB′,

∴∠ACB=45°;

作AG⊥BC于G,

∴AG=CG,

∵∠B=30°,

∴AG= AB= ,

∴CG= ,BG=3,

∴BC=BG+CG=3+

所以答案是:


【考點(diǎn)精析】本題主要考查了翻折變換(折疊問題)的相關(guān)知識(shí)點(diǎn),需要掌握折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,對(duì)稱軸是對(duì)應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電臺(tái)“市民熱線”對(duì)上周內(nèi)接到的熱線電話進(jìn)行了分類統(tǒng)計(jì),得到的統(tǒng)計(jì)信息圖如圖所示,其中有關(guān)房產(chǎn)城建的電話有30個(gè),請(qǐng)你根據(jù)統(tǒng)計(jì)圖的信息回答以下問題:

1)道路交通熱線電話是多少個(gè)占總數(shù)百分比是多少?

2)上周“市民熱線”接到有關(guān)環(huán)境保護(hù)方面的電話有多少個(gè)?

3)據(jù)此估計(jì),除環(huán)境保護(hù)方面的電話外,“市民熱線”今年(按52周計(jì)算)將接到的熱線電話約多少個(gè)?

4)為了更直觀顯示各類“市民熱線”電話的數(shù)目,你準(zhǔn)備采用什么樣的統(tǒng)計(jì)方法?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“科學(xué)”號(hào)是我國目前最先進(jìn)的海洋科學(xué)綜合考察船,它在南海利用探測儀在海面下方探測到點(diǎn)C處有古代沉船.如圖,海面上兩探測點(diǎn)A,B相距1400米,探測線與海面的夾角分別是30°和60°.試確定古代沉船所在點(diǎn)C的深度.(結(jié)果精確到1米,參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)中學(xué)生體質(zhì)健康綜合評(píng)定成績?yōu)?/span>x分,滿分為100分,規(guī)定:85x100A級(jí),75x85B級(jí),60x75C級(jí),x60D級(jí).現(xiàn)隨機(jī)抽取某中學(xué)部分學(xué)生的綜合評(píng)定成績,整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,解答下列問題:

1)在這次調(diào)查中,一共抽取了______名學(xué)生,α=______b= ;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)扇形統(tǒng)計(jì)圖中D級(jí)對(duì)應(yīng)的圓心角為______度;

4)若該校共有2000名學(xué)生,請(qǐng)你估計(jì)該校D級(jí)學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程(組)

(1)11x﹣3=x+2

(2)

(3)

(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小敏同學(xué)測量一建筑物CD的高度,她站在B處仰望樓頂C,測得仰角為30°,再往建筑物方向走30m,到達(dá)點(diǎn)F處測得樓頂C的仰角為45°(B,F,D在同一條直線上)。一直小敏的眼睛與地面距離為1.5m,求這棟建筑物CD的高度(參考數(shù)據(jù): ≈1.732, ≈1.414,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

12

34

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小方格都是邊長為1的正方形

1)求的長度.

2)用勾股定理的知識(shí)證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究:小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究.

下面是小明的探究過程,請(qǐng)你解決相關(guān)問題:

在函數(shù)中,自變量x可以是任意實(shí)數(shù);

如表yx的幾組對(duì)應(yīng)值:

X

0

1

2

3

4

Y

0

1

2

3

2

1

a

______;

,為該函數(shù)圖象上不同的兩點(diǎn),則______;

如圖,在平面直角坐標(biāo)系中,描出以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),并根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象:

該函數(shù)有______最大值最小值;并寫出這個(gè)值為______

求出函數(shù)圖象與坐標(biāo)軸在第二象限內(nèi)所圍成的圖形的面積;

觀察函數(shù)的圖象,寫出該圖象的兩條性質(zhì).

查看答案和解析>>

同步練習(xí)冊(cè)答案