【題目】在一個不透明的口袋中,放有三個標號分別為1,2,3的質地、大小都相同的小球.任意摸出一個小球,記為x,再從剩余的球中任意摸出一個小球,又記為y,得到點(x,y).
(1)用畫樹狀圖或列表等方法求出點(x,y)的所有可能情況;
(2)求點(x,y)在二次函數(shù)y=ax2﹣4ax+c(a≠0)圖象的對稱軸上的概率.

【答案】
(1)解:畫樹狀圖為:

共有6種等可能的情況,分別為(1,2),(1,3),(2,1),(2,3),(3,1),(3,2);


(2)解:拋物線的對稱軸為直線x=﹣ =2,

共有6種等可能的情況,其中點在對稱軸上的情況有2種,分別為(2,1),(2,3),

∴P(點(x,y)在對稱軸上)= =


【解析】(1)分析球不放回的情況,根據“再從剩余的球中任意摸出一個小球”,畫樹狀圖分析可能的結果。
(2)根據拋物線的對稱軸為直線x=-,先求出拋物線的對稱軸,在根據(1)中所得到的點求出概率。
【考點精析】本題主要考查了二次函數(shù)的性質和列表法與樹狀圖法的相關知識點,需要掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小;當一次試驗要設計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結果,通常采用樹狀圖法求概率才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從①,②,③三個條件中選出兩個作為已知條件,另一個作為結論可以組成3個命題.

1)這三個命題中,真命題的個數(shù)為________;

2)選擇一個真命題,并且證明.(要求寫出每一步的依據)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,∠B=D=90°,E、F分別是邊BCCD上的點,且∠EAF=BAD.求證:EF=BE+FD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+bx+c,當2<x<5時,y隨x的增大而減小,則實數(shù)b的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】市場上的紅茶由茶原液與純凈水按一定比例配制而成,其中購買一噸茶原液的錢可以買15 噸純凈水。由于今年以來茶產地連續(xù)大旱,茶原液收購價上漲50%.純凈水價也上漲了10%,導致配制的這種茶飲料成本上漲40%,問這種茶飲料中茶原液與純凈水的配制比例為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知 A0,a),Bb0),Cb,c)三點,其中a,b,c滿足關系式:

1)求A,B,C三點的坐標;

2)如果在第二象限內有一點Pm,),若四邊形ABOP的面積與三角形ABC 的面積相等,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知線段a和射線OA,射線OA上有點B

1)用圓規(guī)和直尺在射線OA上作線段CD,使點BCD的中點,點C在點B的左邊,且BC=a.(不用寫作法,保留作圖痕跡)

2)在(1)的基礎上,若OB=12cm,OC=5cm,求線段OD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,直線AB、CD相交于點OOEOC,OF平分∠AOE.

1)若,則∠AOF的度數(shù)為______;

2)若,求∠BOC的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B,C,D的坐標分別是(1,7),(1,1),(4,1),(6,1),以C,D,E為頂點的三角形與△ABC相似,則點E的坐標不可能是( )

A.(4,0)
B.(6,2)
C.(6,3)
D.(4,5)

查看答案和解析>>

同步練習冊答案