【題目】在平面直角坐標(biāo)系中,已知 A0,a),Bb0),Cbc)三點,其中ab,c滿足關(guān)系式:

1)求A,B,C三點的坐標(biāo);

2)如果在第二象限內(nèi)有一點Pm),若四邊形ABOP的面積與三角形ABC 的面積相等,求點P的坐標(biāo).

【答案】1A0,2),B3,0),C3,4);(2)點P的坐標(biāo)為(-3,).

【解析】

1)利用非負(fù)數(shù)的性質(zhì)求解可得a,b,c的值,從而得出AB,C三點的坐標(biāo);
2)把四邊形ABOP的面積看成兩個三角形面積和,用m來表示,依據(jù)四邊形ABOP的面積與三角形ABC的面積相等,列方程求解即可.

解:(1,,,

a-2=0b-3=0,c-4=0

a=2,b=3c=4,

A02),B30),C3,4);

2)如圖,由(1)中AB,C的坐標(biāo)可得,

AO=2BO=3,BC=4

∵SABO==3,SAPO==-m,

∴S四邊形ABOP=SABO+SAPO=3+(-m)=3-m

∵SABC==6,S四邊形ABOP=SABC,

∴3-m=6,m=-3,

P的坐標(biāo)為(-3,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在矩形ABCD中,BC8CD6,將BCD沿對角線BD翻折,點C落在點C處,BCAD于點E,則BDE的面積為( 。

A. B. C. 21D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊△ABC的頂點A、C處各有一只蝸牛,它們同時出發(fā),分別以每分鐘1米的速度由AB和由CA爬行,其中一只蝸牛爬到終點時,另一只也停止運動,經(jīng)過t分鐘后,它們分別爬行到D、E處,請問:

1)如圖1,在爬行過程中,CDBE始終相等嗎,請證明?

2)如果將原題中的“由AB和由CA爬行”,改為“沿著ABCA的延長線爬行”,EBCD交于點Q,其他條件不變,蝸牛爬行過程中∠CQE的大小保持不變,請利用圖2說明:∠CQE=60°;

3)如果將原題中“由CA爬行”改為“沿著BC的延長線爬行,連接DEACF”,其他條件不變,如圖3,則爬行過程中,證明:DF=EF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:等邊△ABC的邊長為2,點D為平面內(nèi)一點,且BD= AD=2 ,則CD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的口袋中,放有三個標(biāo)號分別為1,2,3的質(zhì)地、大小都相同的小球.任意摸出一個小球,記為x,再從剩余的球中任意摸出一個小球,又記為y,得到點(x,y).
(1)用畫樹狀圖或列表等方法求出點(x,y)的所有可能情況;
(2)求點(x,y)在二次函數(shù)y=ax2﹣4ax+c(a≠0)圖象的對稱軸上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上的AB、CD四點所表示的數(shù)分別是a、bc、d,且(a+16)2+(d+12)2=|b8||c10|

1)求a、b、cd的值;

2)點A,B沿數(shù)軸同時出發(fā)相向勻速運動,4秒后兩點相遇,點B的速度為每秒2個單位長度,求點A的運動速度;

3A,B兩點以(2)中的速度從起始位置同時出發(fā),向數(shù)軸正方向運動,與此同時,C點以每秒1個單位長度的速度向數(shù)軸正方向開始運動,若t秒時有2AB=CD,求t的值;

4A,B兩點以(2)中的速度從起始位置同時出發(fā),相向而行當(dāng)A點運動到C點時,迅速以原來速度的2倍返回,到達(dá)出發(fā)點后,保持改變后的速度又折返向C點運動;當(dāng)B點運動到A點的起始位置后停止運動.當(dāng)B點停止運動時,A點也停止運動.求在此過程中,A,B兩點同時到達(dá)的點在數(shù)軸上對應(yīng)的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司銷售一種進(jìn)價為20 (元/個)的計算器,其銷售量y (萬個)與銷售價格x (元/個)之間為一次函數(shù)關(guān)系,其變化如下表:

價格x (元/個)

30

50

銷售量y (萬個)

5

3

同時,銷售過程中的其他開支(不含進(jìn)價)總計40萬元.若該公司要獲得40萬元的凈利潤,且盡可能讓顧客得到實惠,那么銷售價格應(yīng)定為多少?
(注:凈利潤=總銷售額﹣總進(jìn)價﹣其他開支)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,A、BC三地依次在一直線上,兩輛汽車甲、乙分別從A、B兩地同時出發(fā)駛向C地,如圖②,是兩輛汽車行駛過程中到C地的距離skm)與行駛時間th)的關(guān)系圖象,其中折線段EFFG是甲車的圖象,線段OM是乙車的圖象.

1)圖②中,a的值為   ;點M的坐標(biāo)為   ;

2)當(dāng)甲車在乙車與B地的中點位置時,求行駛的時間t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為原點,點A4,6).

1)如圖①,過點AAB軸,垂足為B,則三角形AOB的面積為

2)如圖②,將線段OA向右平移3個單位長度,再向下平移1個單位長度,得到線段

①求四邊形的面積;

②若P是射線OA上的一動點,連接、,請畫出圖形,并直接寫出,的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案