【題目】如圖1,將一張矩形紙片ABCD沿著對(duì)角線BD向上折疊,頂點(diǎn)C落到點(diǎn)E處,BEAD于點(diǎn)F.

(1)求證:△BDF是等腰三角形;

(2)如圖2,過(guò)點(diǎn)DDGBE,交BC于點(diǎn)G,連接FGBD于點(diǎn)O.

①判斷四邊形BFDG的形狀,并說(shuō)明理由;

②若AB=6,AD=8,求FG的長(zhǎng).

【答案】1)見(jiàn)解析;(2)①菱形,見(jiàn)解析;②.

【解析】

1)根據(jù)兩直線平行內(nèi)錯(cuò)角相等及折疊特性判斷;

2)①根據(jù)已知矩形性質(zhì)及第一問(wèn)證得鄰邊相等判斷;

②根據(jù)折疊特性設(shè)未知邊,構(gòu)造勾股定理列方程求解.

(1)證明:如圖1,根據(jù)折疊,∠DBC=DBE,

ADBC

∴∠DBC=ADB,

∴∠DBE=ADB,

DF=BF

∴△BDF是等腰三角形;

(2)①∵四邊形ABCD是矩形,

ADBC,

FDBG

又∵DGBE

∴四邊形BFDG是平行四邊形,

DF=BF,

∴四邊形BFDG是菱形;

②∵AB=6,AD=8

BD=10.

OB= BD=5.

假設(shè)DF=BF=x,∴AF=ADDF=8x.

∴在直角△ABF,AB+AF=BF,6+(8x) =x,

解得x=

BF=,

FO=,

FG=2FO=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列方程

(1)25x2+10x+1=0(公式法) (2) 7x2 -23x +6=0;(配方法)

(3) (分解因式法) (4)x2-4x-396=0(適當(dāng)?shù)姆椒ǎ?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:⊙O的半徑為25cm,弦AB=40cm,弦CD=48cm,AB∥CD.求這兩條平行弦AB,CD之間的距離______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在ABC中,AB=ACBDACD,CEABE,BD,CE相交于F.

求證:AF平分∠BAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知:在菱形ABCD中,EF分別是BC,CD上的點(diǎn),且CE=CF

(1)求證:△ABE≌△ADF;

(2)過(guò)點(diǎn)CCGEAAF于點(diǎn)H,交AD于點(diǎn)G,若∠BAE=25°,∠BCD=130°,求∠AHC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)P是線段AD上一動(dòng)點(diǎn)(不與與點(diǎn)D重合),PO的延長(zhǎng)線交BCQ點(diǎn).

1)求證:四邊形PBQD為平行四邊形.

2)若AB6cm,AD8cm,P從點(diǎn)A出發(fā).以1cm/秒的速度向點(diǎn)D勻速運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒,問(wèn)四邊形PBQD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,長(zhǎng)為60km的某段線路AB上有甲、乙兩車(chē),分別從南站A和北站B同時(shí)出發(fā)相向而行,到達(dá)B、A后立刻返回到出發(fā)站停止,速度均為30km/h,設(shè)甲車(chē),乙車(chē)距南站A的路程分別為y,y(km)行駛時(shí)間為t(h).

(1)圖2已畫(huà)出y與t的函數(shù)圖象,其中a= ,b= ,c=

(2)分別寫(xiě)出0t2及2<t4時(shí),y與時(shí)間t之間的函數(shù)關(guān)系式.

(3)在圖2中補(bǔ)畫(huà)y與t之間的函數(shù)圖象,并觀察圖象得出在整個(gè)行駛過(guò)程中兩車(chē)相遇的次數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列各式及其驗(yàn)證過(guò)程:

,驗(yàn)證:

,驗(yàn)證:

1)按照上述兩個(gè)等式及其驗(yàn)證過(guò)程,猜想的變形結(jié)果并進(jìn)行驗(yàn)證;

2)針對(duì)上述各式反映的規(guī)律,寫(xiě)出用為自然數(shù),且)表示的等式,并進(jìn)行驗(yàn)證;

3)用為任意自然數(shù),且)寫(xiě)出三次根式的類(lèi)似規(guī)律,并進(jìn)行驗(yàn)證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校課外興趣小組在本校學(xué)生中開(kāi)展“垃圾分類(lèi)”知曉情況專(zhuān)題調(diào)查活動(dòng),采取隨機(jī)抽樣的方式進(jìn)行向卷調(diào)查,問(wèn)卷調(diào)查的結(jié)果分為A、BC、D四類(lèi),其中,A 類(lèi)表示“非常了解”,B類(lèi)表示“比較了解”,C類(lèi)表示“基本了解”,D類(lèi)表示不太了解,學(xué)生可根據(jù)自己的情況任途其中一類(lèi),學(xué)校根據(jù)調(diào)查情況進(jìn)行了統(tǒng)計(jì),并制成了不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖:

1)本次共調(diào)查了學(xué)生_____人,被調(diào)查的學(xué)生中,類(lèi)別為C的學(xué)生有_____人;

2)求類(lèi)別為A的學(xué)生數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

3)求扇形統(tǒng)計(jì)圖中類(lèi)別為 D的學(xué)生數(shù)所對(duì)應(yīng)的圓心角的度數(shù);

4)若該校有學(xué)生 1000名,根據(jù)調(diào)查結(jié)果估計(jì)該校學(xué)生中對(duì)“垃圾分類(lèi)”知識(shí)“非常了解”和“比較了解”的人數(shù)一共約為多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案