【題目】如圖,AB是半圓O的直徑,AC是半圓內(nèi)一條弦,點(diǎn)D是的中點(diǎn),DB交AC于點(diǎn)G,過點(diǎn)A作半圓的切線與BD的延長(zhǎng)線交于點(diǎn)M,連接AD.點(diǎn)E是AB上的一動(dòng)點(diǎn),DE與AC相交于點(diǎn)F.
(1)求證:MD=GD;
(2)填空:①當(dāng)∠DEA= 時(shí),AF=FG;
②若∠ABD=30°,當(dāng)∠DEA= 時(shí),四邊形DEBC是菱形.
【答案】(1)見解析;(2)①90°;②60°
【解析】
(1)由圓周角定理和切線的性質(zhì)可得∠M+∠MAD=∠MAD+∠BAD=90°,再結(jié)合三角形外角的性質(zhì)可得∠M=∠AGD,可證AG=AM,由等腰三角形三線合一可得結(jié)論;
(2)①由直角三角形的性質(zhì)可得AF=FG=DF,由等腰三角形的性質(zhì)和余角的性質(zhì)可求∠DEA=90°;
②由菱形的性質(zhì)可得∠DBA=∠DBC=30°,DE∥BC,即可求解.
證明:(1)如圖,連接BC.
∵D是的中點(diǎn),
∴∠DAC=∠ABD,
∵MA是半圓O的切線,
∴MA⊥AB,
∵AB是半圓O的直徑,
∴AD⊥DB,
∴∠ADM=90°,
∴∠M+∠MAD=∠MAD+∠BAD=90°,
∴∠M=∠BAD=∠DAC+∠BAG=∠ABD+∠BAG=∠AGD,
∴AG=AM,
∵AD⊥MG,
∴MD=GD;
(2)①若AF=FG,
∵∠ADG=90°,
∴AF=FG=DF,
∴∠DAF=∠ADF,
∴∠ADF=∠ABD,
∵∠ADF+∠EDB=90°,
∴∠ABD+∠EDB=90°,
∴∠DEA=90°,
故答案為:90°;
②若四邊形DEBC是菱形,
∴∠DBA=∠DBC=30°,DE∥BC,
∴∠AED=∠ABC=30°+30°=60°,
故答案為:60°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠為了檢驗(yàn)甲、乙兩車間生產(chǎn)的同一款新產(chǎn)品的合格情況(尺寸范圍為 的產(chǎn)品為合格),隨機(jī)各抽取了 個(gè)樣品進(jìn)行檢測(cè),過程如下: 收集數(shù)據(jù)(單位:):
甲車間:
乙車間:
整理數(shù)據(jù)(表 1):
分析數(shù)據(jù)(表 2):
應(yīng)用數(shù)據(jù):
(1)直接寫出表 2 中的 , ;
(2)估計(jì)甲車間生產(chǎn)的 個(gè)該款新產(chǎn)品中合格產(chǎn)品有多少個(gè)?
(3)結(jié)合上述數(shù)據(jù)信息,請(qǐng)判斷哪個(gè)車間生產(chǎn)的新產(chǎn)品更好,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】折紙是一種許多人熟悉的活動(dòng).近些年,經(jīng)過許多人的努力,已經(jīng)找到了多種將正方形折紙的一邊三等分的精確折法,下面探討其中的一種折法:
(綜合與實(shí)踐)
操作一:如圖1,將正方形紙片ABCD對(duì)折,使點(diǎn)A與點(diǎn)D重合,點(diǎn)B與點(diǎn)C重合,再將正方形紙片ABCD展開,得到折痕MN;
操作二:如圖2,將正方形紙片ABCD的右上角沿MC折疊,得到點(diǎn)D的對(duì)應(yīng)的點(diǎn)為D′;
操作三:如圖3,將正方形紙片ABCD的左上角沿MD′折疊再展開,折痕MD′與邊AB交于點(diǎn)P;
(問題解決)
請(qǐng)?jiān)趫D3中解決下列問題:
(1)求證:BP=D′P;
(2)AP:BP= ;
(拓展探究)
(3)在圖3的基礎(chǔ)上,將正方形紙片ABCD的左下角沿CD′折疊再展開,折痕CD′與邊AB交于點(diǎn)Q.再將正方形紙片ABCD過點(diǎn)D′折疊,使點(diǎn)A落在AD邊上,點(diǎn)B落在BC邊上,然后再將正方形紙片ABCD展開,折痕EF與邊AD交于點(diǎn)E,與邊BC交于點(diǎn)F,如圖4.試探究:點(diǎn)Q與點(diǎn)E分別是邊AB,AD的幾等分點(diǎn)?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店購進(jìn)一批優(yōu)質(zhì)晚熟芒果,進(jìn)價(jià)為10元/千克,售價(jià)不低于15元/千克,且不超過40元/千克,根據(jù)銷售情況發(fā)現(xiàn)該芒果在一天內(nèi)的銷售量y(千克)與該天的售價(jià)x(元/千克)之間滿足如表所示的一次函數(shù)關(guān)系:
(1)寫出銷售量y與售價(jià)x之間的函數(shù)關(guān)系式;
(2)設(shè)某天銷售這種芒果獲利W元,寫出W與售價(jià)x之間的函數(shù)關(guān)系式,并求出當(dāng)售價(jià)為多少元時(shí),當(dāng)天的獲利最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點(diǎn)D,連接AD、過點(diǎn)D作DE⊥AC,垂足為點(diǎn)E,交AB的延長(zhǎng)線于點(diǎn)F.
(1)求證:EF是⊙O的切線;
(2)求證:△FDB∽△FAD;
(3)如果⊙O的半徑為5,sin∠ADE=,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,直線AB的解析式為y=﹣x+4,拋物線y=﹣+bx+c與y軸交于點(diǎn)A,與x軸交于點(diǎn)C(6,0),點(diǎn)P是拋物線上一動(dòng)點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)P在第一象限內(nèi)時(shí),求△ABP面積的最大值,并求此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖②,當(dāng)點(diǎn)P在y軸右側(cè)時(shí),過點(diǎn)A作直線l∥x軸,過點(diǎn)P作PH⊥l于點(diǎn)H,將△APH繞點(diǎn)A順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)H的對(duì)應(yīng)點(diǎn)H′恰好落在直線AB上時(shí),點(diǎn)P的對(duì)應(yīng)點(diǎn)P′恰好落在坐標(biāo)軸上,請(qǐng)直接寫出點(diǎn)P的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△OBC在直角坐標(biāo)系內(nèi)的位置如圖所示,點(diǎn)C在y軸上,∠OCB=90°,反比例函數(shù)y=(k>0)在第一象限內(nèi)的圖象與OB邊交于點(diǎn)D(m,3),與BC邊交于點(diǎn)E(n,6).
(1)求m與n的數(shù)量關(guān)系;
(2)連接CD,若△BCD的面積為12,求反比例函數(shù)的解析式和直線OB的解析式;
(3)設(shè)點(diǎn)P是線段OB邊上的點(diǎn),在(2)的條件下,是否存在點(diǎn)P,使得以B、C、P為項(xiàng)點(diǎn)的三角形與△BDE相似?若存在,求出此時(shí)點(diǎn)P戶的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】疫情突發(fā),危難時(shí)刻,從決定建造到交付使用,雷神山、火神山醫(yī)院僅用時(shí)十天,其建造速度之快,充分展現(xiàn)了中國基建的巨大威力!這樣的速度和動(dòng)員能力就是全 國人民的堅(jiān)定信心和盡快控制疫情的底氣!改革開放年來,中國已經(jīng)成為領(lǐng)先世界的基 建強(qiáng)國,如圖①是建筑工地常見的塔吊,其主體部分的平面示意圖如圖②,點(diǎn)在線段上運(yùn)動(dòng),垂足為點(diǎn)的延長(zhǎng)線交于點(diǎn) ,經(jīng)測(cè)量,
(1)求線段的長(zhǎng)度;(結(jié)果 精確到)
(2)連接,當(dāng)線段時(shí), 求點(diǎn)和點(diǎn)之間的距離.(結(jié)果 精確到,參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D、O在△ABC的邊AC上,以CD為直徑的⊙O與邊AB相切于點(diǎn)E,連結(jié)DE、OB,且DE∥OB.
(1)求證:BC是⊙O的切線.
(2)設(shè)OB與⊙O交于點(diǎn)F,連結(jié)EF,若AD=OD,DE=4,求弦EF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com