【題目】如圖,ABCCED均為等邊三角形,且B,CD三點共線.線段BE,AD相交于點OAFBE于點F.若OF=1,則AF的長為( 。

A. 1 B. C. D. 2

【答案】C

【解析】

根據(jù)等邊三角形的性質(zhì)易證△BCE≌△ACD,根據(jù)全等三角形的性質(zhì)可得∠CBE=∠CAD,再根據(jù)三角形外角的性質(zhì)求得∠BOD=120°,即可求得∠AOF=60°,在Rt△AOF中,∠AOF=60°,OF=1,即可求得AF=.

∵△ABC和△CDE都是等邊三角形,

∴BC=AC,CE=CD,∠ACB=∠DCE=60°,

∴∠BCE=∠ACD,

在△BCE和△ACD, ,

∴△BCE≌△ACD(SAS)

∴∠CBE=∠CAD,

∵∠BOD=∠ABE+∠BAD,∠ABC=∠BAC=60°,

∴∠BOD=∠ABE+∠BAC+∠CAD=∠ABE+∠BAC+∠CBE=∠ABC+∠BAC=60°+60°=120°.

∴∠AOF=180°-∠BOD=180°-120°=60°,

Rt△AOF中,∠AOF=60°,OF=1,

∴AF=.

故答案為:.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點的坐標分別為,將線段平移,若平移后的對應(yīng)點為,則的值是_____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,客輪沿折線A—B—CA點出發(fā)經(jīng)過B點再到C點勻速航行,貨輪從AC的中點D出發(fā)沿某一方向勻速直線航行,將一批貨物送達客輪,兩船同時起航,并同時到達折線A—B—C上的某點E處,已知ABBC200海里,∠ABC90°,客輪的速度是貨輪速度的2倍.

(1)選擇題:兩船相遇之處E( )

A.在線段AB

B.在線段BC

C.可能在線段AB上,也可能在線段BC

(2)貨輪從出發(fā)到兩船相遇共航行了多少海里?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】開學初,小芳和小亮去商店購買學習用品,小芳用30元錢購買鋼筆的數(shù)量是小亮用25元錢購買筆記本數(shù)量的2倍,已知每支鋼筆的價格比每本筆記本的價格少2元.
1)求每支鋼筆和每本筆記本各是多少元;
2)學校運動會后,班主任拿出200元學校獎勵基金交給小芳,再次購買上述價格的鋼筆和筆記本共48件作為獎品,獎勵給校運動會中表現(xiàn)突出的同學,經(jīng)雙方協(xié)商,商店給出優(yōu)惠是購買商品的總金額超出50的部分給打九折,請問小芳至少要買多少支鋼筆?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,對角線ACBD交于點O,ACBC,且ABCD的周長為36,OCD的周長比OBC的周長大2

1)求BC,CD的長;

2)求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c與x軸相交于兩點A(1,0),B(3,0),與y軸相交于點C(0,3).

(1)求拋物線的函數(shù)關(guān)系式.
(2)將y=ax2+bx+c化成y=a(x﹣m)2+k的形式(請直接寫出答案).
(3)若點D(3.5,m)是拋物線y=ax2+bx+c上的一點,請求出m的值,并求出此時△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形ABCD中,ADBC,∠B=∠C,要使四邊形ABCD為矩形,還需添加一個條件,這個條件可以是(  )

A. ABCD

B. ACBD

C. A=∠D

D. A=∠B

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】取一張正方形的紙片進行折疊,具體操作過程如下:
第一步:如圖1,先把正方形ABCD對折,折痕為MN.
第二步:點G在線段 MD上,將△GCD沿GC翻折,點D恰好落在MN上,記為點P,連接BP.

(1)判斷△PBC的形狀,并說明理由;
(2)作點C關(guān)于直線AP的對稱點C′,連接PC′、DC′.
①在圖2中補全圖形,并求出∠APC′的度數(shù);
②猜想∠PC′D的度數(shù),并加以證明;(溫馨提示:當你遇到困難時,不妨連接AC′、CC′,研究圖形中特殊的三角形)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,線段是由線段AB平移得到的,已知A、B兩點的坐標分別為A(—23),B(—31)若的坐標為(3,4).

1的坐標為 ;

2)若線段AB上一點P的坐標為(,),則點P的對應(yīng)點的坐標

查看答案和解析>>

同步練習冊答案