【題目】如圖,在一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)中,指針位置固定,三個(gè)扇形的面積都相等,且分別標(biāo)有數(shù)字1,2,3

1)小明轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,當(dāng)轉(zhuǎn)盤(pán)停止轉(zhuǎn)動(dòng)時(shí),指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為   ;

2)小明先轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,當(dāng)轉(zhuǎn)盤(pán)停止轉(zhuǎn)動(dòng)時(shí),記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,當(dāng)轉(zhuǎn)盤(pán)停止轉(zhuǎn)動(dòng)時(shí),再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個(gè)數(shù)字之和是3的倍數(shù)的概率(用畫(huà)樹(shù)狀圖或列表等方法求解).

【答案】1;(2)見(jiàn)解析,

【解析】

1)由標(biāo)有數(shù)字1、2、33個(gè)轉(zhuǎn)盤(pán)中,奇數(shù)的有1、32個(gè),利用概率公式計(jì)算可得;

2)根據(jù)題意列表得出所有等可能的情況數(shù),得出這兩個(gè)數(shù)字之和是3的倍數(shù)的情況數(shù),再根據(jù)概率公式即可得出答案.

1)∵在標(biāo)有數(shù)字1、2、33個(gè)轉(zhuǎn)盤(pán)中,奇數(shù)的有1、32個(gè),

∴指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為

故答案為:;

2)列表如下:

1

2

3

1

(11)

(2,1)

(3,1)

2

(12)

(2,2)

(32)

3

(1,3)

(23)

(33)

由表可知,所有等可能的情況數(shù)為9種,其中這兩個(gè)數(shù)字之和是3的倍數(shù)的有3種,

所以這兩個(gè)數(shù)字之和是3的倍數(shù)的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè))

1)求拋物線的頂點(diǎn)坐標(biāo)(用含的代數(shù)式表示);

2)求線段AB的長(zhǎng);

3)拋物線與軸交于點(diǎn)C(點(diǎn)C不與原點(diǎn)重合),若的面積始終小于的面積,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為更精準(zhǔn)地關(guān)愛(ài)留守學(xué)生,某學(xué)校將留守學(xué)生的各種情形分成四種類型:A.由父母一方照看;B.由爺爺奶奶照看;C.由叔姨等近親照看;D.直接寄宿學(xué)校.某數(shù)學(xué)小組隨機(jī)調(diào)查了一個(gè)班級(jí),發(fā)現(xiàn)該班留守學(xué)生數(shù)量占全班總?cè)藬?shù)的20%,并將調(diào)查結(jié)果制成如下兩幅不完整的統(tǒng)計(jì)圖.

1)該班共有   名留守學(xué)生,B類型留守學(xué)生所在扇形的圓心角的度數(shù)為   ;

2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)已知該校共有2400名學(xué)生,現(xiàn)學(xué)校打算對(duì)D類型的留守學(xué)生進(jìn)行手拉手關(guān)愛(ài)活動(dòng),請(qǐng)你估計(jì)該校將有多少名留守學(xué)生在此關(guān)愛(ài)活動(dòng)中受益?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中,拋物線yx2+3xa2+a+2a1)的圖象交x軸于點(diǎn)A和點(diǎn)B(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為E

1)如圖1,求線段AB的長(zhǎng)度(用含a的式子表示)及拋物線的對(duì)稱軸;

2)如圖2,當(dāng)拋物線的圖象經(jīng)過(guò)原點(diǎn)時(shí),在平面內(nèi)是否存在一點(diǎn)P,使得以AB、E、P為頂點(diǎn)的四邊形能否成為平行四邊形?如果能,求出P點(diǎn)坐標(biāo);如果不能,請(qǐng)說(shuō)明理由;

3)如圖3,當(dāng)a3時(shí),若M點(diǎn)為x軸上一動(dòng)點(diǎn),連結(jié)MC,將線段MC繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)90°得到線段MN,連結(jié)ACCN、AN,則△ACN周長(zhǎng)的最小值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.在RtOAB中,∠OAB=90°,∠BOA=30°,OA=2,若以O為坐標(biāo)原點(diǎn),OA所在直線為x軸,建立如圖所示的平面直角坐標(biāo)系,點(diǎn)B在第一象限內(nèi),將RtOAB沿OB折疊后,點(diǎn)A落在第一象限內(nèi)的點(diǎn)C處.

1)求經(jīng)過(guò)點(diǎn)O,C,A三點(diǎn)的拋物線的解析式.

2)若點(diǎn)M是拋物線上一點(diǎn),且位于線段OC的上方,連接MO、MC,問(wèn):點(diǎn)M位于何處時(shí)三角形MOC的面積最大?并求出三角形MOC的最大面積.

3)拋物線上是否存在一點(diǎn)P,使∠OAP=BOC?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)問(wèn)題發(fā)現(xiàn)

如圖1,在OABOCD中,OA=OB,OC=OD,AOB=COD=40°,連接AC,BD交于點(diǎn)M.填空:

的值為   ;

②∠AMB的度數(shù)為   

(2)類比探究

如圖2,在OABOCD中,∠AOB=COD=90°,OAB=OCD=30°,連接ACBD的延長(zhǎng)線于點(diǎn)M.請(qǐng)判斷的值及∠AMB的度數(shù),并說(shuō)明理由;

(3)拓展延伸

在(2)的條件下,將OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點(diǎn)M,若OD=1,OB=,請(qǐng)直接寫(xiě)出當(dāng)點(diǎn)C與點(diǎn)M重合時(shí)AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,長(zhǎng)度為6千米的國(guó)道兩側(cè)有,兩個(gè)城鎮(zhèn),從城鎮(zhèn)到公路分別有鄉(xiāng)鎮(zhèn)公路連接,連接點(diǎn)為,其中、之間的距離為2千米,、之間的距離為1千米,、之間的鄉(xiāng)鎮(zhèn)公路長(zhǎng)度為2.3千米,之間的鄉(xiāng)鎮(zhèn)公路長(zhǎng)度為3.2千米,為了發(fā)展鄉(xiāng)鎮(zhèn)經(jīng)濟(jì),方便兩個(gè)城鎮(zhèn)的物資輸送,現(xiàn)需要在國(guó)道上修建一個(gè)物流基地,設(shè)、之間的距離為千米,物流基地沿公路到、兩個(gè)城鎮(zhèn)的距離之和為干米,以下是對(duì)函數(shù)隨自變量的變化規(guī)律進(jìn)行的探究,請(qǐng)補(bǔ)充完整.

1)通過(guò)取點(diǎn)、畫(huà)圖、測(cè)量,得到的幾組值,如下表:

/千米

0

1.0

2.0

3.0

4.0

5.0

6.0

/千米

10.5

8.5

6.5

10.5

12.5

2)如圖2,建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫(huà)出該函數(shù)的圖象.

3)結(jié)合畫(huà)出的函數(shù)圖象,解決問(wèn)題:

①若要使物流基地沿公路到、兩個(gè)城鎮(zhèn)的距離之和最小,則物流基地應(yīng)該修建在何處?(寫(xiě)出所有滿足條件的位置)

答:__________

②如右圖,有四個(gè)城鎮(zhèn)、、分別位于國(guó)道兩側(cè),從城鎮(zhèn)到公路分別有鄉(xiāng)鎮(zhèn)公路連接,若要在國(guó)道上修建一個(gè)物流基地,使得沿公路到、的距離之和最小,則物流基地應(yīng)該修建在何處?(寫(xiě)出所有滿足條件的位置)

答:__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小李經(jīng)營(yíng)一家水果店,某日到水果批發(fā)市場(chǎng)批發(fā)一種水果.經(jīng)了解,一次性批發(fā)這種水果不得少于,超過(guò)時(shí),所有這種水果的批發(fā)單價(jià)均為3.圖中折線表示批發(fā)單價(jià)(元)與質(zhì)量的函數(shù)關(guān)系.

1)求圖中線段所在直線的函數(shù)表達(dá)式;

2)小李用800元一次可以批發(fā)這種水果的質(zhì)量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,ABAC,AB=,BC=,對(duì)角線AC,BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),分別交BC,AD于點(diǎn)E,F,下列說(shuō)法:①在旋轉(zhuǎn)過(guò)程中,AF=CE. OB=AC,③在旋轉(zhuǎn)過(guò)程中,四邊形ABEF的面積為,④當(dāng)直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°時(shí),連接BF,DE則四邊形BEDF是菱形,其中正確的是(

A.①②④B.① ②C.①②③④D.② ③ ④

查看答案和解析>>

同步練習(xí)冊(cè)答案