【題目】如圖,C為線段AE上一動點(不與點A,E重合),在AE同側分別作正三角形ABC和正三角形CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.以下五個結論:
①AD=BE;
②PQ∥AE;
③EQ=DP;
④∠AOB=60°;
⑤當C為AE中點時,S△BPQ:S△CDE=1:3.其中恒成立的結論有( )
A.①②④B.①②③④C.①②③⑤D.①②④⑤
【答案】B
【解析】
根據(jù)等邊三角形性質得出AB=BC=AC,DC=CE=DE,∠BCA=∠DCE=∠EDC=∠DEC=60°,推出∠ACD=∠BCE,根據(jù)SAS證△ACD≌△BCE,即可推出①;根據(jù)ASA證△DPC≌△EQC,推出CP=CQ,證三角形CPQ是等邊三角形,即可推出②③;根據(jù)等邊三角形性質和平角定義即可判斷④求出P、Q分別是BC和BE中點,推出△BPQ的面積等于△BCE面積的,推出△BCE和△CDE的面積相等,即可判斷⑤.
∵等邊△ABC和等邊△DCE,
∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60°,
∴∠ACD=∠BCE,
在△ACD和△BCE中 ,
∴△ACD≌△BCE,
∴∠CBE=∠DAC,AD=BE,∴①正確;
∵∠ACB=∠DCE=60°,
∴∠BCD=60°,
∵等邊△DCE,
∠EDC=60°=∠BCD,
∴BC∥DE,
∴∠CBE=∠DEO,
∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,∴④正確;
∵△ACD≌△BCE,
∴∠ADC=∠BEC,
在△DPC和△EQC中 ,
∴△DPC≌△EQC,
∴EQ=DP,∴③正確;
CP=CQ,
∵∠BCD=60°,
∴△CPQ是等邊三角形,
∴∠PQC=60°=∠DCE,
∴PQ∥AE,∴②正確;
∵當C為AE中點時,
∵∠BCA=∠DEC=60°,
∴P是AD中點,
∴CP=DE=AB,
即P是BC中點,
同理Q是BE的中點,也是DC中點,
即PQ是△BCE的中位線,
∵PQ∥AC,
∴△BPQ∽△BCE,
∴ ,
∵當C為AE中點,等邊△ABC和等邊△DCE,
∴BD∥AE,
即△DCE的邊CE上的高和△BCE的邊CE上的高相等,
∴△DEC的面積等于△BCE的面積,
∴S△BPQ:S△CDE=1:4,∴⑤錯誤.
正確的有①②③④.
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀:已知點A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點之間的距離表示為|AB|=|a﹣b|.
理解:
(1)數(shù)軸上表示2和﹣3的兩點之間的距離是 ;
(2)數(shù)軸上表示x和﹣5的兩點A和B之間的距離是 ;
(3)當代數(shù)式|x﹣1|+|x+3|取最小值時,相應的x的取值范圍是 ;最小值是 .
應用:某環(huán)形道路上順次排列有四家快遞公司:A、B、C、D,它們順次有快遞車16輛,8輛,4輛,12輛,為使各快遞公司的車輛數(shù)相同,允許一些快遞公司向相鄰公司調出,問共有多少種調配方案,使調動的車輛數(shù)最少?并求出調出的最少車輛.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB交x軸于點A(a,0),交y軸于點B(0,b),且a、b滿足.
(1)點A的坐標為 ;點B的坐標為 ;
(2)如圖1,若點C的坐標為(-3,-2),且BE⊥AC于點E,OD⊥OC交BE延長線于D,試求點D的坐標;
(3)如圖2,M、N分別為OA、OB邊上的點,OM=ON,OP⊥AN交AB于點P,過點P 作PG⊥BM,交AN的延長線于點G,請寫出線段AG、OP與PG之間的數(shù)量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了了解學生每周在校體育鍛煉時間,在本校隨機抽取了若干名學生進行調查,并依據(jù)調查結果繪制了以下不完整的統(tǒng)計圖表,請根據(jù)圖表信息解答下列問題:
時間(小時) | 頻數(shù)(人數(shù)) | 頻率 |
2≤t<3 | 4 | 0.1 |
3≤t<4 | 10 | 0.25 |
4≤t<5 | a | 0.15 |
5≤t<6 | 8 | b |
6≤t<7 | 12 | 0.3 |
合計 | 40 | 1 |
(1)表中的a= ,b= ;
(2)請將頻數(shù)分布直方圖補全;
(3)若該校共有1200名學生,試估計全校每周在校參加體育鍛煉時間至少有4小時的學生約為多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O是直線AC上一點,OB是一條射線,OD平分∠AOB,OE在∠BOC內,且∠DOE=60°,∠BOE=∠EOC,則下列四個結論正確的有__________
①∠BOD=30°;②射線OE平分∠AOC;③圖中與∠BOE互余的角有2個;④圖中互補的角有6對.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市居民使用自來水按照如下標準收費:若每戶月用水不超過12m3,按a元/m3收費;若超過12m3,但不超過20m3,則超過的部分按1.5a元/m3收費;若超過20m3超過的部分按2a元/m3收費
(1)把相應的收費金額填在表格里;
(2)已知壯壯家上個月用水量14m3,交水費45元,求a的值;
(3)在(2)的條件下,壯壯媽媽開了一個面館,工商部門規(guī)定:商業(yè)用水的價格按照居民用水價格提高50%收取,壯壯媽媽的面館預計本月用水量28m3,求壯壯媽媽的面館本月的水費.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知△ABC 中,AB=AC,D 是 CB 延長線上一點,∠ADB=60°,E 是 AD上一點,E 是 AD的一點,且 DE=DB.求證:AE=BE+BC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2016年5月6日,中國第一條具有自主知識產(chǎn)權的長沙磁浮線正式開通運營,該路線連接了長沙火車南站和黃花國際機場兩大交通樞紐,沿線生態(tài)綠化帶走廊的建設尚在進行中,屆時將給乘客帶來美的享受.星城渣土運輸公司承包了某標段的土方運輸任務,擬派出大、小兩種型號的渣土運輸車運輸土方,已知2輛大型渣土運輸車與3輛小型渣土運輸車一次共運輸土方31噸,5輛大型渣土運輸車與6輛小型渣土運輸車一次共運輸土方70噸.
(1)一輛大型渣土運輸車和一輛小型渣土運輸車一次各運輸土方多少噸?
(2)該渣土運輸公司決定派出大、小兩種型號的渣土運輸車共20輛參與運輸土方,若每次運輸土方總量不少于148噸,且小型渣土運輸車至少派出2輛,則有哪幾種派車方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的對稱中心在坐標原點,AB∥x軸,AD、BC分別與x軸交于E、F,連接BE、DF,若正方形ABCD有兩個頂點在雙曲線y=上,實數(shù)a滿足a3﹣a=1,則四邊形DEBF的面積是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com