【題目】如圖,二次函數(shù)的圖象的對稱軸是直線,則下列理論:① ,③,④,⑤當(dāng)時(shí), 的增大而減小,其中正確的是( ).

A. ①②③ B. ②③④ C. ③④⑤ D. ①③④

【答案】C

【解析】①根據(jù)拋物線開口向下即可得出a<0,結(jié)合拋物線的對稱軸為x=1可得出b=-2a>0,①錯(cuò)誤;②由①得出b=-2a,將其代入2a-b可得出2a-b=4a<0,②錯(cuò)誤;③根據(jù)函數(shù)圖象可知當(dāng)x=1時(shí)y>0,將x=1代入拋物線解析式即可得出a+b+c>0,③正確;④根據(jù)函數(shù)圖象可知當(dāng)x=-1時(shí),y<0,將x=-1代入拋物線解析式即可得出a-b+c<0,④正確;⑤根據(jù)函數(shù)圖象即可得出x>1時(shí)y隨x的增大而增大,⑤正確. 綜上即可得出結(jié)論.

解:∵ ,∴①錯(cuò)誤.

又∵,∴, .∴②錯(cuò)誤.

又∵當(dāng)時(shí),∴,∴③正確

當(dāng)時(shí),∴,∴④正確.

又∵當(dāng)時(shí)的增大而減小.∴⑤是正確.故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】證明定理:三角形三條邊的垂直平分線相交于一點(diǎn),并且這一點(diǎn)到三個(gè)頂點(diǎn)的距離相等,已知:

如圖,在ABC中,分別作AB邊、BC邊的垂直平分線,兩線相交于點(diǎn)P,分別交AB邊、BC邊于點(diǎn)E、F.

求證:AB、BC、AC的垂直平分線相交于點(diǎn)P

證明:點(diǎn)P是AB邊垂直平線上的一點(diǎn),

= ).

同理可得,PB=

= (等量代換).

(到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的

AB、BC、AC的垂直平分線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四個(gè)數(shù)﹣3.14,0,1,2中為負(fù)數(shù)的是( 。
A.﹣3.14
B.0
C.1
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水庫的水位在5小時(shí)內(nèi)持續(xù)上漲,初始水位高度為6米,水位以每小時(shí)0.3米的速度勻速上升,則水庫的水位高度y(米)與時(shí)間x(小時(shí))(0≤x≤5)的函數(shù)關(guān)系式為 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖,在四邊形ABCD中,AB=AD,B=D=90°,E、F分別是邊BC、CD上的點(diǎn),且EAF=BAD求證:EF=BE+FD;

2)如圖,在四邊形ABCD中,AB=ADB+D=180°,E、F分別是邊BCCD上的點(diǎn),且EAF=BAD,(1)中的結(jié)論是否仍然成立?

3)如圖,在四邊形ABCD中,AB=AD,B+ADC=180°,E、F分別是邊BC、CD延長線上的點(diǎn),且EAF=BAD,(1)中的結(jié)論是否仍然成立?若成立,請證明;若不成立,請寫出它們之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形兩邊長分別為3cm,5cm,設(shè)第三邊為xcm,則x的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各點(diǎn)中,在第四象限的點(diǎn)是(

A.-1,-4B.1-4C.-1,0D.1,4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與X軸交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè),點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.

(1)求拋物線對應(yīng)的函數(shù)解析式;

(2)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( 。
A.兩個(gè)全等的三角形一定關(guān)于某條直線對稱
B.關(guān)于某條直線對稱的兩個(gè)三角形一定全等
C.直角三角形是軸對稱圖形
D.銳角三角形是軸對稱圖形

查看答案和解析>>

同步練習(xí)冊答案