【題目】如圖,在△ABC中,BC=4,BD平分∠ABC,過(guò)點(diǎn)A作AD⊥BD于點(diǎn)D,過(guò)點(diǎn)D作DE∥CB,分別交AB、AC于點(diǎn)E、F,若EF=2DF,則AB的長(zhǎng)為( )
A. 4 B. 6 C. 8 D. 10
【答案】B
【解析】
根據(jù)角平分線的定義及平行線的性質(zhì)可得∠ABD=∠CBD=∠EBD,由等腰三角形的性質(zhì)可得BE=ED;再證得∠BAD=∠EDA,即可得AE=ED,所以AE=BE,因?yàn)?/span>DE∥CB,可求得,由此求得ED的長(zhǎng),繼而求得AB的長(zhǎng).
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∵DE∥CB,
∴∠ABD=∠CBD=∠EBD,
∴BE=ED;
∵AD⊥BD,
∴∠ABD+∠BAD=90°,∠EDB+∠EDA=90°,
∴∠BAD=∠EDA,
∴AE=ED,
∴AE=BE,
∵DE∥CB,
∴,
∵EF=2DF,
∴DF=1,
∴ED=EF+FD=2+1=3,
∴AE=BE=3,
∴AB=6.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC= .對(duì)角線AC,BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),分別交BC,AD于點(diǎn)E,F(xiàn).
(1)證明:當(dāng)旋轉(zhuǎn)角為90°時(shí),四邊形ABEF是平行四邊形;
(2)試說(shuō)明在旋轉(zhuǎn)過(guò)程中,線段AF與EC總保持相等;
(3)在旋轉(zhuǎn)過(guò)程中,四邊形BEDF可能是菱形嗎?如果不能,請(qǐng)說(shuō)明理由;如果能,說(shuō)明理由并求出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC和△A′B′C′在平面直角坐標(biāo)系中的位置分別如圖所示.
(1)分別寫(xiě)出下列各點(diǎn)的坐標(biāo):A_______;B_______;C_______;
(2)△ABC由△A′B′C′經(jīng)過(guò)怎樣的平移得到?
答:_____________________________________
(3)求△ABC面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,將△ABC繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到△ADE,點(diǎn)C落在邊AD上,連接BD.若∠DAE=α,則用含α的式子表示∠CBD的大小是( )
A.α
B.90°﹣α
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點(diǎn),延長(zhǎng)CE,BA交于點(diǎn)F,連接AC,DF.
(1)求證:四邊形ACDF是平行四邊形;
(2)當(dāng)CF平分∠BCD時(shí),寫(xiě)出BC與CD的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣ x2+bx+c經(jīng)過(guò)A(﹣1,0),B(0,2)兩點(diǎn),將△OAB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后得到△O′A′B′,點(diǎn)A落到點(diǎn)A′的位置.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)將拋物線沿y軸平移后經(jīng)過(guò)點(diǎn)A′,求平移后所得拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(3)設(shè)(2)中平移后所得拋物線與y軸的交點(diǎn)為C,若點(diǎn)P在平移后的拋物線上,且滿(mǎn)足△OCP的面積是△O′A′P面積的2倍,求點(diǎn)P的坐標(biāo);
(4)設(shè)(2)中平移后所得拋物線與y軸的交點(diǎn)為C,與x軸的交點(diǎn)為D,點(diǎn)M在x軸上,點(diǎn)N在平移后所得拋物線上,直接寫(xiě)出以點(diǎn)C,D,M,N為頂點(diǎn)的四邊形是以CD為邊的平行四邊形時(shí)點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(A類(lèi))已知如圖,四邊形ABCD中,AB=BC,AD=CD,求證:∠A=∠C.
(B類(lèi))已知如圖,四邊形ABCD中,AB=BC,∠A=∠C,求證:AD=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知△ABC與△CDA關(guān)于點(diǎn)O對(duì)稱(chēng),過(guò)O任作直線EF分別交AD,BC于點(diǎn)E,F(xiàn),下面的結(jié)論:
①點(diǎn)E和點(diǎn)F,點(diǎn)B和點(diǎn)D是關(guān)于中心O對(duì)稱(chēng)點(diǎn);
②直線BD必經(jīng)過(guò)點(diǎn)O;
③四邊形DEOC與四邊形BFOA的面積必相等;
④△AOE與△COF成中心對(duì)稱(chēng).
其中正確的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問(wèn)題:
(1)已知,如圖1,△ABC中,P點(diǎn)是∠ABC和∠ACB的角平分線的交點(diǎn),求證:∠P=∠A+90°。
(2)如圖2,若P點(diǎn)是∠ABC和∠ACB外角的角平分線的交點(diǎn),∠A=80°,那么∠P=____°;
(3)如圖3,△ABC中,若P點(diǎn)是∠ABC外角和∠ACB外角的角平分線的交點(diǎn),∠A=,那么∠P=________(請(qǐng)用含的代數(shù)式表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com