【題目】如圖,的直徑,是弦,點在圓外,,于點,連接,,

1)求證:的切線;

2)求證:;

3)設(shè)的面積為,的面積為,若,求的值.

【答案】(1)見解析;(2)見解析;(3)

【解析】

1)由題意根據(jù)同弧所對圓周角相等得,由等量代換即可證明即為所求;

2)先證明,根據(jù)相似比得到,再由OA=OB,即可證明;

3)由的直徑可證明,得到,根據(jù)設(shè),,∴,再求出證明,求出,由中點,得即可得出結(jié)果

1)∵,

,

,

,

,

,

的直徑,

的直徑.

2)∵

,

,

,

,

,

,

又∵,

3)∵的直徑,

,

,

,

∴在中,,

∴設(shè),,

,

,

,

,

,

,

,

中點,

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC中,ABAC

(1)用尺規(guī)作出圓心在直線BC上,且過AC兩點的⊙O;(注:保留作圖痕跡,標出點O,并寫出作法

(2)若∠B=30°,求證:AB與(1)中所作⊙O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x2+bx+c與直線AB交于A(-4,-4),B(0,4)兩點,直線AC:y=-x-6y軸與點C.E是直線AB上的動點,過點EEFx軸交AC于點F,交拋物線于點G.

(1)求拋物線y=-x2+bx+c的表達式;

(2)連接GB、EO,當(dāng)四邊形GEOB是平行四邊形時,求點G的坐標;

(3)①在y軸上存在一點H,連接EH、HF,當(dāng)點E運動到什么位置時,以A、E、F、H為頂點的四邊形是矩形?求出此時點E、H的坐標;

②在①的前提下,以點E為圓心,EH長為半徑作圓,點M為⊙E上一動點,求AM+CM的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABC中,ACB=90°,ABC=25°,OAB的中點. OA繞點O逆時針旋轉(zhuǎn)θ °OP0<θ<180,當(dāng)BCP恰為軸對稱圖形時,θ的值為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標系中,直線軸、軸分別交于點和點,拋物線經(jīng)過點,且與直線的另一個交點為

1)求的值和拋物線的解析式;

2)點在拋物線上,且點的橫坐標為).軸交直線于點,點在直線上,且四邊形為矩形(如圖2),若矩形的周長為,求的函數(shù)關(guān)系式以及的最大值;

3是平面內(nèi)一點,將繞點沿逆時針方向旋轉(zhuǎn)后,得到,點、、的對應(yīng)點分別是點、.若的兩個頂點恰好落在拋物線上,請直接寫出點的橫坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為更好地踐行社會主義核心價值觀,讓同學(xué)們珍惜糧食,學(xué)會感恩.校學(xué)生會積極倡導(dǎo)光盤行動,某天午餐后學(xué)生會干部隨機調(diào)查了部分同學(xué)就餐飯菜的剩余情況,并將結(jié)果統(tǒng)計后制成如圖所示的不完整的統(tǒng)計圖.

1)這次被調(diào)查的同學(xué)共有________名;

2)計算在扇形統(tǒng)計圖中剩大量飯菜所對應(yīng)扇形圓心角的度數(shù);

3)校學(xué)生會通過數(shù)據(jù)分析,估計這次被調(diào)查的所有學(xué)生一餐浪費的食物可以提供40人用餐.據(jù)此估算,全校2000名學(xué)生一餐浪費的食物可供多少人食用一餐?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為1的小正方形組成的網(wǎng)格中建立如圖所示的平面直角坐標系,是格點三角形(頂點是網(wǎng)格線的交點).

1)畫出關(guān)于軸對稱的;

2)畫出繞原點逆時針旋轉(zhuǎn)得到的;

3)在(2)的條件下,點所經(jīng)過的路徑長為 (結(jié)果保留).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線軸交于兩點,交軸于點對稱軸是直線

1)求拋物線的解析式及點的坐標;

2)連接是線段上一點,點關(guān)于直線的對稱點正好落在上,求點的坐標;

3)動點從點出發(fā),以每秒個單位長度的速度向點運動,到達點即停止運動.過點軸的垂線交拋物線于點交線段于點.設(shè)運動時間為秒.

①連接,若相似,請直接寫出的值;

能否為等腰三角形.若能,求出的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列是關(guān)于四個圖案的描述.

1所示是太極圖,俗稱陰陽魚,該圖案關(guān)于外圈大圓的圓心中心對稱;

2所示是一個正三角形內(nèi)接于圓;

3所示是一個正方形內(nèi)接于圓;

4所示是兩個同心圓,其中小圓的半徑是外圈大圓半徑的三分之二.

這四個圖案中,陰影部分的面積不小于該圖案外圈大圓面積一半的是(

A.1和圖3B.2和圖3C.2和圖4D.1和圖4

查看答案和解析>>

同步練習(xí)冊答案