【題目】如圖,O的半徑為1,弦AB=1,點(diǎn)P為優(yōu)弧AB上一動點(diǎn),AC⊥AP交直線PB于點(diǎn)C,則△ABC的最大面積是( 。
A.B.C.D.
【答案】D
【解析】
連結(jié)OA、OB,如圖1,由OA=OB=AB=1可判斷△OAB為等邊三角形,則∠AOB=60°,根據(jù)圓周角定理得∠APB=∠AOB=30°,由于AC⊥AP,所以∠C=60°,因?yàn)?/span>AB=1,則要使△ABC的最大面積,點(diǎn)C到AB的距離要最大;由∠ACB=60°,可根據(jù)圓周角定理判斷點(diǎn)C在⊙D上,且∠ADB=120°,如圖2,于是當(dāng)點(diǎn)C優(yōu)弧AB的中點(diǎn)時,點(diǎn)C到AB的距離最大,此時△ABC為等邊三角形,從而得到△ABC的最大面積.
解:連結(jié)OA、OB,作△ABC的外接圓D,如圖1,
∵OA=OB=1,AB=1,
∴△OAB為等邊三角形,
∴∠AOB=60°,
∴∠APB=∠AOB=30°,
∵AC⊥AP,
∴∠C=60°,
∵AB=1,要使△ABC的最大面積,則點(diǎn)C到AB的距離最大,
∵∠ACB=60°,點(diǎn)C在⊙D上,
∴∠ADB=120°,
如圖2,
當(dāng)點(diǎn)C優(yōu)弧AB的中點(diǎn)時,點(diǎn)C到AB的距離最大,此時△ABC為等邊三角形,且面積為,
∴△ABC的最大面積為.
故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰Rt△ABC中,BA=BC,∠ABC=90°,點(diǎn)D在AC上,將△ABD繞點(diǎn)B沿順時針方向旋轉(zhuǎn)90°后,得到△CBE.
(1)求∠DCE的度數(shù);
(2)若AB=4,CD=3AD,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)直接寫出點(diǎn)A、B、C的坐標(biāo);
(2)在拋物線的對稱軸上存在一點(diǎn)P,使得PA+PC的值最小,求此時點(diǎn)P的坐標(biāo);
(3)點(diǎn)D是第一象限內(nèi)拋物線上的一個動點(diǎn)(與點(diǎn)C、B不重合)過點(diǎn)D作DF⊥x軸于點(diǎn)F,交直線BC于點(diǎn)E,連接BD,直線BC把△BDF的面積分成兩部分,使,請求出點(diǎn)D的坐標(biāo);
(4)若M為拋物線對稱軸上一動點(diǎn),使得△MBC為直角三角形,請直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D在半圓O上,半徑OB=2,AD=10,點(diǎn)C在弧BD上移動,連接AC,H是AC上一點(diǎn),∠DHC=90°,連接BH,點(diǎn)C在移動的過程中,BH的最小值是( 。
A. 5B. 6C. 7D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過A(-1,0)、B(3,0)點(diǎn),直線l是拋物線的對稱軸.
(1)求拋物線的函數(shù)關(guān)系式;
(2)在直線l上確定一點(diǎn)P,使△PAC的周長最小,求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的四個頂點(diǎn)都在上,點(diǎn)在上,若是上的一點(diǎn),且.
(Ⅰ)求證:≌,并指出可以通過怎樣的旋轉(zhuǎn)得到;
(Ⅱ)求線段、、之間滿足的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是王阿姨晚飯后步行的路程s(單位:m)與時間t(單位:min)的函數(shù)圖象,其中曲線段AB是以B為頂點(diǎn)的拋物線一部分.下列說法不正確的是( )
A.25min~50min,王阿姨步行的路程為800m
B.線段CD的函數(shù)解析式為
C.5min~20min,王阿姨步行速度由慢到快
D.曲線段AB的函數(shù)解析式為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,點(diǎn)E、F是矩形ABCD外兩點(diǎn),AE⊥CF于H,AD=3,DC=4,DE=,∠EDF=90°,則DF的長是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com