【題目】如圖所示,在△ABC中,∠C=2∠B,D是BC邊上的一點,且AD⊥AB,E是BD的中點,連結AE.
求證:(1)∠AEC=∠C;
(2)BD=2AC.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形 ABCD 中,AB=6cm,BC=3cm,E 為 CD 的中點.動點 P 從 A 點出發(fā),以每秒1cm 的速度沿 A﹣B﹣C﹣E 運動,最終到達點 E.若點 P 運動時間為 x 秒,則 x=_______時,△APE 的面積等于 6.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠1+∠2=180°,∠B=∠D.說明AB∥CD的理由.
補全下面的說理過程,并在括號內(nèi)填上適當?shù)睦碛?/span>
解:∵∠1+∠2=180°(已知)
∠2=∠AHB( )
∴ (等量代換)
∴DE∥BF( )
∴∠D=∠ ( )
∵∠ =∠B(等量代換)
∴AB∥CD( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知整數(shù)a1,a2,a3,a4,…滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此類推,則a2018的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,延長△ABC的各邊,使得BF=AC,AE=CD=AB,連結DE,EF,F(xiàn)D,得到△DEF為等邊三角形.
求證:(1)△AEF≌△CDE;
(2)△ABC為等邊三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為的大正方形,兩塊是邊長都為的小正方形,五塊是長為、寬為的全等小矩形,且> .(以上長度單位:cm)
(1)觀察圖形,可以發(fā)現(xiàn)代數(shù)式可以因式分解為 ;
(2)若每塊小矩形的面積為10,四個正方形的面積和為58,試求圖中所有裁剪線(虛線部分)長之和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某高校共有5個大餐廳和2個小餐廳。經(jīng)過測試:同時開放1個大餐廳和2個小餐廳,可供1680名學生就餐;同時開放2個大餐廳和1個小餐廳,可供2280名學生就餐。
(1)1個大餐廳和1個小餐廳分別可供多少名學生就餐?
(2)若7個餐廳同時開放,能否供全校的5300名學生就餐?請說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,B點坐標為(3,0),與y軸交于點C(0,﹣3)
(1)求拋物線的解析式;
(2)點P在拋物線位于第四象限的部分上運動,當四邊形ABPC的面積最大時,求點P的坐標和四邊形ABPC的最大面積.
(3)直線l經(jīng)過A、C兩點,點Q在拋物線位于y軸左側的部分上運動,直線m經(jīng)過點B和點Q,是否存在直線m,使得直線l、m與x軸圍成的三角形和直線l、m與y軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某市民健身廣場的平面示意圖,它是由6個正方形拼成的長方形,已知中間最小的正方形A的邊長是1米.
(1)若設圖中最大正方形B的邊長是x米,請用含x的代數(shù)式分別表示出:
正方形F的邊長= 米;正方形E的邊長= 米;正方形C的邊長= 米;
(2)觀察圖形的特點可知,長方形相對的兩邊是相等的(如圖中的MN=PQ).根據(jù)等量關系可求出x= ;
(3)現(xiàn)沿著長方形廣場的四條邊鋪設下水管道,由甲、乙2個工程隊單獨鋪設分別需要10天、15天完成.如果兩隊從同一點開始,沿相反的方向同時施工2天后,因甲隊另有任務,余下的工程由乙隊單獨施工,試問乙還要多少天完成?甲、乙2個工程隊各鋪設多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com