【題目】已知Rt△ABC中,∠C=90°,∠A、∠B、∠C的對邊分別是a,b,c,設△ABC的面積為S.
(1)填表:
三邊a,b,c | S | c+b-a | c-b+a |
3,4,5 | 6 | ||
5,12,13 | 20 | ||
8,15,17 | 24 |
(2)①如果m=(c+b-a)(c-b+a),觀察上表猜想S與m之間的數(shù)量關系,并用等式表示出來.
②證明①中的結論.
【答案】(1)6,30,60,4,6,10;(2)①S=m;②見解析
【解析】
(1)根據(jù)直角三角形的面積等于兩條直角邊的乘積除以2,可求得,把三邊對應數(shù)值分別代入c-b+a,即得結果;
(2)①通過圖表中數(shù)據(jù)分析,可得4S=m,即得S與m的關系式;
②利用平方差公式和完全平方公式,把m展開化簡,利用勾股定理即可證明.
(1)直角三角形面積S=,代入數(shù)據(jù)分別計算得:,,,由,分別代入計算得:5-4+3=4,13-12+5=6,17-15+8 =10;
三邊a,b,c | S | c+b-a | c-b+a |
3,4,5 | 6 | 6 | 4 |
5,12,13 | 30 | 20 | 6 |
8,15,17 | 60 | 24 | 10 |
(2)①結合圖表可以看出:6×4÷4=6,20×6÷4=30,24×10÷4=60,即得m=4S,所以S=m;
②證明:∵m= (c+b-a)(c-b+a)
= [c+(b-a)][(c-(b-a)]= [c2-(b-a)2]= [c2-(a2+b2)+2ab]
在Rt△ABC中,c2=a2+b2,∴m=×2ab=ab,
又∵S=ab,
∴S=m.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把一塊含30°角的三角板的直角頂點放在反比例函數(shù)y=﹣(x<0)的圖象上的點C處,另兩個頂點分別落在原點O和x軸的負半軸上的點A處,且∠CAO=30°,則AC邊與該函數(shù)圖象的另一交點D的坐標坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知平行四邊形OACB的頂點O、A、B的坐標分別是(0,0)、(0,a),(b,0),且a、b滿足
(1)如圖1,求點C的坐標;
(2)如圖2,點P為邊OB上一動點,作等腰Rt△APD,且∠APD=90°.當點P從O運動到點B的過程中,求點D運動路程的長度;
(3)如圖3,在(2)的條件下,作等腰Rt△BED,且∠DBE=90°,再作等腰Rt△ECF,且∠ECF=90°,直線FE分別交AC、OB于點M、N,求證:FM=EN.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一架2.5米長的梯子AB斜靠在豎直的墻AC上,這時B到墻底端C的距離為0.7米.如果梯子的頂端沿墻面下滑0.4米,那么點B將向左滑動多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點D,連接AD,過D作AC的垂線,交AC邊于點E,交AB 邊的延長線于點F.
(1)求證:EF是⊙O的切線;
(2)若∠F=30°,BF=3,求弧AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形紙片ABCD中,AB=8,BC=16,將矩形紙片沿EF折疊,使點C與點A重合.
(1)判斷△AEF的形狀,并說明理由;
(2)求折痕EF的長度;
(3)如圖2,展開紙片,連接CF,則點E到CF的距離是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以△ABC的BC邊上一點O為圓心的圓,經(jīng)過A,B兩點,且與BC邊交于點E,D為BE的下半圓弧的中點,連接AD交BC于F,若AC=FC.
(1)求證:AC是⊙O的切線:
(2)若BF=8,DF=,求⊙O的半徑r.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在以點O為圓心的兩個同心圓中,大圓的弦AB交小圓于點C,D(如圖).
(1)求證:AC=BD;
(2)若大圓的半徑R=10,小圓的半徑r=8,且圓O到直線AB的距離為6,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:關于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.
(1)求二次函數(shù)的表達式;
(2)在y軸上是否存在一點P,使△PBC為等腰三角形.若存在,請求出點P的坐標;
(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到 達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com