【題目】抗擊疫情,我們每個(gè)人都要做到講衛(wèi)生,勤洗手,科學(xué)消毒,如圖(1)是一瓶消毒洗手液. 圖(2)是它的示意圖,當(dāng)手按住頂部A下壓時(shí),洗手液瞬間從噴口B流出,路線從拋物線經(jīng)過(guò)C,E兩點(diǎn).瓶子上部分是由弧和弧組成,其圓心分別為D,C.下部分的是矩形CGHD的視圖,CG=8 cm,GH=10 cm,點(diǎn)E到臺(tái)面GH的距離為14 cm,點(diǎn)B到臺(tái)面的距離為20 cm,且B,D,H三點(diǎn)共線.若手心距DH的水平距離為2 cm時(shí)剛好接洗手液,此時(shí)手心距水平臺(tái)面的高度為______cm

【答案】17

【解析】

根據(jù)題意得出各點(diǎn)坐標(biāo),利用待定系數(shù)法求拋物線解析式進(jìn)而求解.

解: 如圖:

CD=GH=DE=10,CG=8,

根據(jù)題意,得

EF=,

由勾股定理,得:,

∵點(diǎn)D的橫坐標(biāo)為5,則點(diǎn)E的橫坐標(biāo)為;

C-5,8),E-3,14),B5,20).

設(shè)拋物線解析式為y=ax2+bx+c,

因?yàn)閽佄锞經(jīng)過(guò)C、E、B三點(diǎn),

,

解得:

∴拋物線的解析式為:,

∵手心距DH的水平距離為2 cm時(shí)剛好接洗手液,

當(dāng)時(shí),有

;

∴手心距水平臺(tái)面的高度為17cm

故答案為:17.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】課題研究小組對(duì)附著在物體表面的三個(gè)微生物(課題小組成員把他們分別標(biāo)號(hào)為1,2,3)的生長(zhǎng)情況進(jìn)行觀察記錄.這三個(gè)微生物第一天各自一分為二,產(chǎn)生新的微生物(分別被標(biāo)號(hào)為4,56,7,89),接下去每天都按照這樣的規(guī)律變化,即每個(gè)微生物一分為二,形成新的微生物(課題組成員用如圖所示的圖形進(jìn)行形象的記錄).那么標(biāo)號(hào)為100的微生物會(huì)出現(xiàn)在( )

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠C90°,矩形DEFG的頂點(diǎn)GF分別在AC、BC上,DEAB上,設(shè)AG5,AD4,求ADGFEB的面積比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將大小兩把含30°角的直角三角尺按如圖1 位置擺放,即大小直角三角尺的直角頂點(diǎn)C 重合,小三角尺的頂點(diǎn) D、E 分別在大三角尺的直角邊 AC、BC 上,此時(shí)小三角尺的斜邊 DE 恰好經(jīng)過(guò)大三角尺的重心G .已知A CDE 30°, AB 12 .

(1)求小三角尺的直角邊CD 的長(zhǎng);

(2)將小三角尺繞點(diǎn)C 逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)D第一次落在大三角尺的邊 AB 上時(shí)(如圖2),求點(diǎn) B 、 E 之間的距離;

(3)在小三角尺繞點(diǎn)C 旋轉(zhuǎn)的過(guò)程中,當(dāng)直線 DE 經(jīng)過(guò)點(diǎn) A 時(shí),求BAE 的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀對(duì)話,解答問(wèn)題:

1)分別用a、b表示小冬從小麗、小兵袋子中抽出的卡片上標(biāo)有的數(shù)字,請(qǐng)用樹(shù)狀圖法或列表法寫(xiě)出(a,b)的所有取值;

2)求在(a,b)中使關(guān)于x的一元二次方程x2﹣ax+2b=0有實(shí)數(shù)根的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形ABCD是正方形,點(diǎn)P在直線BC上,點(diǎn)G在直線AD上(PG不與正方形頂點(diǎn)重合,且在CD的同側(cè)),PD=PG,DFPG于點(diǎn)H,交直線AB于點(diǎn)F,將線段PG繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段PE,連結(jié)EF

1)如圖1,當(dāng)點(diǎn)P與點(diǎn)G分別在線段BC與線段AD上時(shí).

①求證:DF=PG;

②若AB=3,PC=1,求四邊形PEFD 的面積;

2)如圖2,當(dāng)點(diǎn)P與點(diǎn)G分別在線段BC與線段AD的延長(zhǎng)線上時(shí),請(qǐng)猜想四邊形PEFD 是怎樣的特殊四邊形,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線y=2x+b與雙曲線交于A,B兩點(diǎn).P是線段AB上一點(diǎn)(不與點(diǎn)A,點(diǎn)B重合),過(guò)點(diǎn)P作平行于x軸的直線交雙曲線于點(diǎn)M,過(guò)點(diǎn)P作平行于y軸的直線交雙曲線于點(diǎn)N

1)當(dāng)點(diǎn)A的橫坐標(biāo)為1時(shí),求b的值:

2)在(1)的條件下,設(shè)P點(diǎn)的橫坐標(biāo)為m

①若m=-1,判斷PMPN的數(shù)量關(guān)系,并說(shuō)明理由;

②若PMPN,結(jié)合函數(shù)圖象,直接寫(xiě)出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明家所在居民樓的對(duì)面有一座大廈AB,高為74米,為測(cè)量居民樓與大廈之間的距離,小明從自己家的窗戶C處測(cè)得大廈頂部A的仰角為37°,大廈底部B的俯角為48°

1)求∠ACB的度數(shù);

2)求小明家所在居民樓與大廈之間的距離.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈,sin48°≈,cos48°≈,tan48°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷售一種名牌襯衫,平均每天可售出20件,每件盈利40元,為了擴(kuò)大銷售,增加盈利,盡量減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)1元,商場(chǎng)平均每天可多售出2件,

1)若商場(chǎng)平均每天要盈利1200元,每件襯衫應(yīng)降價(jià)多少元?

2)當(dāng)每件襯衫降價(jià)多少元時(shí),商場(chǎng)每天獲利最大,每天獲利最大是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案