如圖,在平面直角坐標系xoy中,拋物線與x軸,y軸的交點分別為點A,點B,過點B作x軸的平行線BC,交拋物線于點C,連結(jié)AC.現(xiàn)有兩動點P,Q分別從O,C兩點同時出發(fā),點P以每秒4個單位的速度沿OA向終點A移動,點Q以每秒1個單位的速度沿CB向點B移動,點P停止運動時,點Q也同時停止運動,線段OC,PQ相交于點D,過點D作DE∥OA,交CA于點E,射線QE交x軸于點F.設(shè)動點P,Q移動的時間為t(單位:秒)
(1)求A,B,C三點的坐標和拋物線的頂點的坐標;
(2)當(dāng)t為何值時,四邊形PQCA為平行四邊形?請寫出計算過程;
(3)當(dāng)0<t<時,△PQF的面積是否總為定值?若是,求出此定值,若不是,請說明理由;
(4)當(dāng)t為何值時,△PQF為等腰三角形?請寫出解答過程.
解:(1),令得,
∴或∴;
在中,令得即;
由于BC∥OA,故點C的縱坐標為-10,由得或
即且易求出頂點坐標為
于是,,頂點坐標為。
(2)若四邊形PQCA為平行四邊形,由于QC∥PA。故只要QC=PA即可,而故得;
(3)設(shè)點P運動秒,則,,說明P在線段OA上,且不與點OA、重合,
由于QC∥OP知△QDC∽△PDO,故
∴∴
又點Q到直線PF的距離,∴,
于是△PQF的面積總為90。
(4)由上知,,。構(gòu)造直角三角形后易得
① 若FP=PQ,即,故,
∵∴∴…
② 若QP=QF,即,無的滿足條件;
③ 若PQ=PF,即,得,∴或都不滿足,故無的滿足方程;
綜上所述:當(dāng)時,△PQR是等腰三角形。
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標系中,直線與
拋物線交于A,B兩點,點A在x軸上,點B的橫坐標為-8.
(1)求拋物線的解析式.
(2)點P是直線AB上方的拋物線上一動點(不與點A,B重合),過點P作x軸的垂線,垂足為C,交直線AB于點D,作PE⊥AB于點E.
①設(shè)△PDE的周長為l,點P的橫坐標為x,求l關(guān)于x的函數(shù)關(guān)系式,并求出l的最大值.
②連接PA,以PA為邊作圖示一側(cè)的正方形APFG.隨著點P的運動,正方形的大小、位置也隨之改變.當(dāng)頂點F或G恰好落在y軸上時,直接寫出對應(yīng)的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
數(shù)學(xué)課上,老師用多媒體給同學(xué)們放了由魔術(shù)界當(dāng)紅藝人劉謙表演的的神奇的障眼法“硬幣穿玻璃”魔術(shù),敏捷的身手、幽默的語言把同學(xué)們逗得樂不可支。看完后老師說:“今天我也來當(dāng)一回魔術(shù)師給你們現(xiàn)場表演一個數(shù)學(xué)魔術(shù)。”說完便在黑板上畫出下面兩個圖:
請你借助數(shù)學(xué)知識幫助同學(xué)們分析老師畫的這兩個圖,通過計算驗證說明圖1到圖2的拼接是否可行,若不行請說明理由,并畫出正確的拼接圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,小華發(fā)現(xiàn)電線桿AB的影子落在土坡的坡面CD和地面BC上,量得CD=8m,BC=20m,CD與地面成30°角,且此時測得1米木桿的影長為2m,則電線桿的高度為________
A.14m B.28m C.(14+)m D.(14+)m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,DE∥BC,DE分別與AB、AC相交于點D、E,若AD=4,
DB=2, 則的值為( )(原創(chuàng))
A、 B、 C、 D、
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com