年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,矩形OBCD的邊OD、OB分別在x軸正半軸和y軸負(fù)半軸上,且OD=10,
OB=8.將矩形的邊BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),使點(diǎn)C恰好與x軸上的點(diǎn)A重合.
(1)若拋物線經(jīng)過A、B兩點(diǎn),求該拋物線的解析式:______________;
(2)若點(diǎn)M是直線AB上方拋物線上的一個(gè)動(dòng)點(diǎn),
作MN⊥x軸于點(diǎn)N.是否存在點(diǎn)M,使△AMN
與△ACD相似?若存在,求出點(diǎn)M的坐標(biāo);
若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
從邊長相等的正三角形、正四邊形、正五邊形、正六邊形、正八邊形中任選兩種不同的 正多邊形,能夠進(jìn)行平面鑲嵌的概率是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某公司開發(fā)了一種新型的家電產(chǎn)品,又適逢“家電下鄉(xiāng)”的優(yōu)惠政策.現(xiàn)投資40萬元用于該產(chǎn)品的廣告促銷,已知該產(chǎn)品的本地銷售量y1(萬臺(tái))與本地的廣告費(fèi)用x(萬元)之間的函數(shù)關(guān)系滿足 .
該產(chǎn)品的外地銷售量y2(萬臺(tái))與外地廣告費(fèi)用t(萬元)之間的函數(shù)關(guān)系可用如圖所示的拋物線和線段AB來表示.其中點(diǎn)A為拋物線的頂點(diǎn).
(1)結(jié)合圖像,求出y2(萬臺(tái))與外地廣告費(fèi)用t(萬元)之間的函數(shù)關(guān)系式;
(2)求該產(chǎn)品的銷售總量y(萬臺(tái))與外地廣告費(fèi)用t(萬元)之間的函數(shù)關(guān)系式;
(3)如何安排廣告費(fèi)用才能使銷售總量最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
有兩個(gè)圓,⊙的半徑等于地球的半徑,⊙的半徑等于一個(gè)籃球的半徑,現(xiàn)將兩個(gè)圓都向外膨脹(相當(dāng)于作同心圓),使周長都增加1米,則半徑伸長的較多的圓是( )
A、⊙ B、⊙ C、兩圓的半徑伸長是相同的 D、無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,△ABC中,∠B=∠C=30°,AD⊥BC,O是AD上一點(diǎn)(1)若⊙O是△ABC的內(nèi)切圓,且半徑為,則AB=_______;(2)若以AD為直徑的⊙O恰與BC邊相切,⊙O交AB于E,交AC于F. 過O點(diǎn)的直線MN分別交線段BE和CF于M,N,且AM:MB=3:5,則AN:NC的值為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系xoy中,拋物線與x軸,y軸的交點(diǎn)分別為點(diǎn)A,點(diǎn)B,過點(diǎn)B作x軸的平行線BC,交拋物線于點(diǎn)C,連結(jié)AC.現(xiàn)有兩動(dòng)點(diǎn)P,Q分別從O,C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P以每秒4個(gè)單位的速度沿OA向終點(diǎn)A移動(dòng),點(diǎn)Q以每秒1個(gè)單位的速度沿CB向點(diǎn)B移動(dòng),點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也同時(shí)停止運(yùn)動(dòng),線段OC,PQ相交于點(diǎn)D,過點(diǎn)D作DE∥OA,交CA于點(diǎn)E,射線QE交x軸于點(diǎn)F.設(shè)動(dòng)點(diǎn)P,Q移動(dòng)的時(shí)間為t(單位:秒)
(1)求A,B,C三點(diǎn)的坐標(biāo)和拋物線的頂點(diǎn)的坐標(biāo);
(2)當(dāng)t為何值時(shí),四邊形PQCA為平行四邊形?請(qǐng)寫出計(jì)算過程;
(3)當(dāng)0<t<時(shí),△PQF的面積是否總為定值?若是,求出此定值,若不是,請(qǐng)說明理由;
(4)當(dāng)t為何值時(shí),△PQF為等腰三角形?請(qǐng)寫出解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在同一坐標(biāo)系中,圖形a是圖形b向上平移3個(gè)單位長度得到的,如果圖形a中點(diǎn)A的坐標(biāo)為(4,-2),則圖形b中與點(diǎn)A對(duì)應(yīng)的點(diǎn)的坐標(biāo)為___ ____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com