【題目】是兩塊全等的含的三角板,按如圖①所示拼在一起,重合.

1)求證:四邊形為平行四邊形;

2)取中點,將繞點順時針方向旋轉(zhuǎn)到如圖位置,直線分別相交于兩點,猜想長度的大小關系,并證明你的猜想;

3)在(2)的條件下,當旋轉(zhuǎn)角為多少度時,四邊形為菱形.并說明理由.

【答案】1)證明見解析;(2OP=OQ,證明見解析;(390°,理由見解析.

【解析】

1)已知△ABC≌△FCB,根據(jù)全等三角形的性質(zhì)可知AB=CF,AC=BF,根據(jù)兩組對邊分別相等的四邊形是平行四邊形即可得到結(jié)論.

2)根據(jù)已知利用AAS判定△COQ≌△BOP,根據(jù)全等三角形的性質(zhì)即可得到OP=OQ

3)根據(jù)對角線互相垂直的平行四邊形的菱形進行分析即可.

1)證明:∵△ABC≌△FCB,

AB=CFAC=BF

∴四邊形ABFC為平行四邊形.

2)解:OP=OQ,

理由如下:∵OC=OB,∠COQ=BOP,∠OCQ=PBO,

∴△COQ≌△BOP

OQ=OP

3)解:90°

理由:∵OP=OQ,OC=OB,

∴四邊形PCQB為平行四邊形,

BCPQ,

∴四邊形PCQB為菱形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,BC=6,CD是斜邊AB上的中線,將BCD沿直線CD翻折至ECD的位置,連接AE.若DEAC,計算AE的長度等于_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一家食品公司將一種新研發(fā)的食品免費送給一些人品嘗,并讓每個人按A(不喜歡)、B(一般)、C(比較喜歡)、D(非常喜歡)四個等級對食品進行評價,圖1和圖2是該公司采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖

請你根據(jù)以上統(tǒng)計圖提供的信息,回答下列問題:

(1)本次調(diào)查的人數(shù)為 人;

(2)圖1中,a = C等級所占的圓心角的度數(shù)為 度;

(3)請直接在圖中補全條形統(tǒng)計圖.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在直角梯形ABCD中,ABBC,ADBC,點PDC上一點,且AP=AB,過點CCEBP交直線BPE.

(1) ,求證:

(2) AB=BC.

如圖2,當點PE重合時,求的值;

如圖3,設∠DAP的平分線AF交直線BPF,當CE=1,時,直接寫出線段AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,垂足分別是

1)證明:

2)連接,猜想的關系?并證明你的猜想的正確性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了提高學生書寫漢字的能力,增強保護漢字的意識,我市舉辦了首屆漢字聽寫大賽,經(jīng)選拔后有50名學生參加決賽,這50名學生同時聽寫50個漢字,若每正確聽寫出一個漢字得1分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:

組別

成績x

頻數(shù)(人數(shù))

1

25≤x<30

4

2

30≤x<35

8

3

35≤x<40

16

4

40≤x<45

a

5

45≤x<50

10

請結(jié)合圖表完成下列各題:

(1)求表中a的值;

(2)請把頻數(shù)分布直方圖補充完整;

(3)若測試成績不低于40分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?

(4)第510名同學中,有4名男同學,現(xiàn)將這10名同學平均分成兩組進行對抗練習,且4名男同學每組分兩人,求小宇與小強兩名男同學能分在同一組的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某二元一次方程組的解是m為常數(shù)).若將看作平面直角坐標系中一個點P的橫坐標,y看作點P的縱坐標,下列4種說法:

Px,y)一定不在第三象限;

②點Pxy)可能是坐標原點;

③點Pxy)的縱坐標y隨橫坐標x增大而增大;

④點Pxy)的縱坐標y隨橫坐標x增大而減。

其中,正確的是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個正方形AOBC各頂點的坐標分別為A0,3),O0,0),B3,0),C3,3).若以原點為位似中心,將這個正方形的邊長縮小為原來的,則新正方形的中心的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工藝品專賣店計劃購進甲、乙兩種不同類型的木雕工藝品,已知件甲種工藝品的進價與件乙種工藝品的進價的和為元,件甲種工藝品的進價與件乙種工藝品的進價的和為元.

1)求每件甲種、乙種工藝品的進價分別是多少元;

2)如果購進甲種工藝品有優(yōu)惠,優(yōu)惠方法是:購進甲種工藝品超過件,超出部分可以享受折優(yōu)惠.若購進為正整數(shù))件甲種工藝品需要花費元,請你寫出的函數(shù)表達式.

查看答案和解析>>

同步練習冊答案