(2010•奉賢區(qū)一模)已知,如圖1:在正方形ABCD中,AB=2,點(diǎn)P是DC延長線上一點(diǎn),以P為圓心,PD長為半徑的圓的一段弧交AB邊于點(diǎn)E,
(1)若以A為圓心,AE為半徑的圓與以BC為直徑的圓外切時(shí),求AE的長;
(2)如圖2:連接PE交BC邊于點(diǎn)F,連接DE,設(shè)AE長為x,CF長為y,求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)將點(diǎn)B沿直線EF翻折,使點(diǎn)B落在平面上的B′處,當(dāng)EF=時(shí),△AB′B與△BEF是否相似?若相似,請(qǐng)加以證明;若不相似,簡(jiǎn)要說明理由.

【答案】分析:(1)兩圓外切,則圓心距等于兩圓的半徑和;設(shè)BC的中點(diǎn)為G,那么AG的長應(yīng)該是AE+BC,進(jìn)而可在Rt△ABG中,由勾股定理求得AE的長.
(2)若要x、y發(fā)生聯(lián)系,需將它們構(gòu)建到同一個(gè)直角三角形中;連接DF,過D作DH⊥PE于H;通過證△DAE≌△DHE得到AE=EH=x,通過證△DHF≌△DCF得到CF=FH=y,進(jìn)而可在Rt△EFB中,根據(jù)勾股定理求得x、y的函數(shù)關(guān)系式;
(3)由(2)知:當(dāng)EF=時(shí),x+y=,聯(lián)立(2)的函數(shù)關(guān)系式可求得此時(shí)x的值,進(jìn)而可求出AE、BF的長;根據(jù)折疊的性質(zhì)知:EF垂直平分BB′,設(shè)垂足為Q;在Rt△BEF中,根據(jù)直角三角形面積的不同表示方法,可求得BQ的長,也就得出了BB′的長;然后再判斷兩個(gè)直角三角形的對(duì)應(yīng)邊是否成比例即可.
解答:解:(1)取BC的中點(diǎn)G,連接AG.(1分)
∵圓A與圓G圓外切,
∴AG=AE+1.(1分)
正方形ABCD中,AB=2,設(shè)AE=x.
∵在Rt△ABG中,AB2+BG2=AG2,(1分)
(負(fù)數(shù)舍去).(1分)
∴以A為圓心,AE為半徑的圓與以BC為直徑的圓外切時(shí),AE的長為

(2)過點(diǎn)D作DH⊥PE于H,連接DF.(1分)
∵PD=PE,
∴∠PDE=∠PED.
∵四邊形ABCD為正方形,
∴DC∥AB,
∴∠PDE=∠DEA,
∴∠PED=∠DEA;
∵∠A=∠DHE=90°,DE=DE,
∴△DAE≌△DHE;
∴DA=DH,EA=EH.(1分)
∵DC=DH,∠DCF=∠DHF=90°,DF=DF,
∴△DHF≌△DCF;
∴CF=FH;(1分)
∵AE=x,CF=y,
∴EF=x+y,BE=2-x,BF=2-y;
∴在直角三角形BEF中,BE2+BF2=EF2,
∴(2-x)2+(2-y)2=(x+y)2,
整理得到:;(2分)

(3)∵EF=,
,
,
解得:.(1分)
當(dāng)x1=1時(shí),;
∵B沿直線EF翻折落在平面上的B'處,
∴BB'⊥EF,設(shè)垂足為Q.
∴BQ=,BB'=
∵E、Q分別為AB、BB'的中點(diǎn),
∴EQ∥AB',
∴∠ABB'=∠EQB=90°.
在△AB'B與△BEF中,,
=,
∴△AB'B∽△BEF;(3分)
(用相似傳遞性也可以證明△AB'B∽△BEF,也按步驟分步得分)
當(dāng)時(shí),
==2,=1,
EQ與AB'不平行,
∴△ABB'不是直角三角形,
∴△AB'B與△BEF不相似.(1分)
綜上所述,當(dāng)EF=,AE=1時(shí),△AB'B∽△BEF;
當(dāng)EF=,時(shí),△AB'B與△BEF不相似.
點(diǎn)評(píng):此題考查了正方形的性質(zhì)、相切兩圓的位置關(guān)系、勾股定理、相似三角形及全等三角形的判定和性質(zhì)等知識(shí)的應(yīng)用能力,綜合性強(qiáng),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年上海市奉賢區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•奉賢區(qū)一模)如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),已知點(diǎn)A的坐標(biāo)為(2,2),點(diǎn)B、C在y軸上,BC=8,AB=AC,直線AB與x軸相交于點(diǎn)D,
(1)求C、D的坐標(biāo);
(2)求經(jīng)過A、C、D三點(diǎn)的二次函數(shù)解析式;
(3)求∠CAD的正弦.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年上海市奉賢區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:選擇題

(2010•奉賢區(qū)一模)已知二次函數(shù)的解析式為y=(x-2)2+1,則該二次函數(shù)圖象的頂點(diǎn)坐標(biāo)是( )
A.(-2,1)
B.(2,1)
C.(2,-1)
D.(1,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年上海市奉賢區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•奉賢區(qū)一模)如圖,在△ABC中,BD平分∠ABC,交AC于點(diǎn)D,點(diǎn)E在BD的延長線上,BA•BD=BC•BE.求證:AE=AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年上海市奉賢區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:填空題

(2010•奉賢區(qū)一模)如果一斜坡的坡度是1:,那么坡角α=    度.

查看答案和解析>>

同步練習(xí)冊(cè)答案