【題目】如圖,二次函數(shù)y=-x2+ax+b的圖象與x軸交于A(-,0),B(2,0)兩點,且與y軸交于點C.
(1)求該拋物線的解析式,并判斷△ABC的形狀;
(2)設P是x軸上方的拋物線上的動點,過點P作PM⊥x軸,垂足為M,是否存在點P,使得以P、A 、M為頂點的三角形與ABC相似?若存在,求出點P的坐標;若不存在,請說明理由.
【答案】(1)見解析;(2)P(,1 ) (0,1).
【解析】試題分析:
(1)由已知條件可設二次函數(shù)的解析式為: ,化簡整理為一般形式即可;由所得解析式可得點C的坐標為(0,1),再由勾股定理求得AC2、BC2、AB2,最后由勾股定理的逆定理可得△ABC是直角三角形;
(2)由(1)可知∠ACB=90°,由PM⊥x軸可得∠PMA=90°,即∠ACB=∠PMA=90°,
因此當:①或②時,以點P、M、A為頂點的三角形與△ABC相似;設出點P的坐標,分以上兩種情況討論、計算即可.
試題解析:
(1)二次函數(shù)的圖象與軸交于A,B兩點,
∴ 拋物線的解析式為,即: ;
∴點C的坐標為(0,1);
∴AC2=AO2+CO2=,
BC2= BO2+CO2=5,
AB2=;
∴AC2+BC2=AB2,
∴△ABC是直角三角形,且∠ACB=90°;
(2)如圖,∵PM⊥x軸,
∴∠PMA=90°,
∵∠ACB=90°,
∴∠ACB=∠PMA.
所以當: 或時,以點P、M、A為頂點的三角形與△ABC相似,
由點P在二次函數(shù)的圖象上,可設其坐標為: ,
則由已知可得:PM=,AM= ,由此可得:
或 ,
解得: (不合題意,舍去)或(不合題意,舍去),
∴存在點P使以點P、M、A為頂點的三角形與△ABC相似,其坐標分別為: 和.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB:BC=3:4,∠BAC,∠ACB的平分線相交于點E,過點E作EF∥BC交AC于點F,則S△EFC:S△ABC=______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知點B(0,9),點C為x軸上一動點,連接BC,△ODC和△EBC都是等邊三角形.
(1)求證:DE=BO;
(2)如圖2,當點D恰好落在BC上時.
①求點E的坐標;
②在x軸上是否存在點P,使△PEC為等腰三角形?若存在,寫出點P的坐標;若不存在,說明理由;
③如圖3,點M是線段BC上的動點(點B,點C除外),過點M作MG⊥BE于點G,MH⊥CE于點H,當點M運動時,MH+MG的值是否發(fā)生變化?若不會變化,直接寫出MH+MG的值;若會變化,簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究:
如圖,在平面直角坐標系中,直線與軸交于點,與直線交于點, 直線與軸交于點.
(1)求直線的函數(shù)表達式;
(2)在線段上找一點,使得與的面積相等,求出點的坐標;
(3)y軸上有一動點,直線上有一動點,若是以線段為斜邊的等腰直角三角形,求出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠計劃生產A、B兩種產品共10件,其生產成本和利潤如下表:
(1)若工廠計劃獲利14萬元,問A、B兩種產品應分別生產多少件?
(2)若工廠投入資金不多于44萬元,且獲利多于14萬元,問工廠有哪幾種生產方案?
(3)在(2)條件下,哪種方案獲利最大?并求最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】材料:帕普斯借助函數(shù)給出了一種“三等分銳角”的方法,具體如下:
①建立平面直角坐標系,將已知銳角∠AOB的頂點與原點O重合,角的一邊OB與x軸正方向重合;
②在平面直角坐標系里,繪制函數(shù)y=的圖象,圖象與已知角的另一邊OA交于點P;
③以P為圓心,2OP為半徑作弧,交函數(shù)y=的圖象于點R;
④分別過點P和R作x軸和y軸的平行線,兩線相交于點M、Q;
⑤連接OM,得到∠MOB,這時∠MOB=∠AOB.
根據(jù)以上材料解答下列問題:
(1)設點P的坐標為(a,),點R的坐標為(b,),則點M的坐標為 ;
(2)求證:點Q在直線OM上;
(3)求證:∠MOB=∠AOB;
(4)應用上述方法得到的結論,如何三等分一個鈍角(用文字簡要說明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(14分)如圖,已知拋物線()與x軸交于點A(1,0)和點B(﹣3,0),與y軸交于點C,且OC=OB.
(1)求此拋物線的解析式;
(2)若點E為第二象限拋物線上一動點,連接BE,CE,求四邊形BOCE面積的最大值,并求出此時點E的坐標;
(3)點P在拋物線的對稱軸上,若線段PA繞點P逆時針旋轉90°后,點A的對應點A′恰好也落在此拋物線上,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】互聯(lián)網(wǎng)時代,發(fā)達的物流業(yè)改變了我們的生活.某快遞公司的分發(fā)中心、菜鳥驛站、快遞員公寓依次分布在同一條直線上,快遞員甲、乙分別同時從菜鳥驛站和分發(fā)中心出發(fā),甲先騎自行車回到分發(fā)中心,將自行車歸還分發(fā)中心后步行經過菜鳥驛站返回公寓(歸還自行車的時間忽略不計),乙先從分發(fā)中心步行到菜鳥驛站,步行速度與甲的步行速度相同,到達菜鳥驛站后停下來繼續(xù)完成剩余工作,隨后跑步回公寓,最后兩人同時到達公寓.甲、乙兩人與公寓的距離y(米)與出發(fā)的時間x(分鐘)之間的關系如圖所示.
(1)甲騎自行車的速度為 米/分,乙跑步的速度為 米/分;
(2)乙在菜鳥驛站停留的時間為 分鐘;
(3)甲乙第二次相遇后再經過多少分鐘他們相距450米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com