【題目】如圖,在中,,,是的角平分線.
(1)請?jiān)?/span>上確定點(diǎn),使得;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)求證:.
【答案】(1)作圖見解析;(2)證明見解析
【解析】
(1)作線段AB的垂直平分線即可;
(2)先求出∠BAC的度數(shù),再根據(jù)角平分線的定義求出∠BAD的度數(shù),根據(jù)三角形外角的性質(zhì)求出∠DEB的度數(shù),根據(jù)角的和差求出∠DBE的度數(shù),從而可證DE=DB.
(1)解:如圖,
(2)證明:在Rt△ABC中,∠C=90°,∠CBA=54°,
∴∠CAB=90°-∠CBA=36°,
∵AD是△ABC的角平分線,
∴∠BAD=∠CAB=18°.
∵點(diǎn)E在AB的垂直平分線上,
∴EA=EB,
∴∠EBA=∠CAB=18°,
∴∠DEB=∠EBA+∠EAB=36°,∠DBE=∠CBA-∠EBA=36°,
∴∠DEB=∠DBE,
∴DE=DB.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,對于某點(diǎn)P(P不是原點(diǎn)),稱以點(diǎn)P為圓心,長為半徑圓為點(diǎn)P的半長圓;對于點(diǎn)Q,若將點(diǎn)P的半長圓繞原點(diǎn)旋轉(zhuǎn),能夠使得點(diǎn)Q位于點(diǎn)P的半長圓內(nèi)部或圓上,則稱點(diǎn)Q能被點(diǎn)P半長捕獲(或點(diǎn)P能半長捕獲點(diǎn)Q).
(1)在平面直角坐標(biāo)系xoy中,點(diǎn)M(2,0),則點(diǎn)M的半長圓的面積為 ;下列各點(diǎn),能被點(diǎn)M半長捕獲的點(diǎn)有 ;
(2)已知點(diǎn),
①點(diǎn)N(0,n),當(dāng)t=1時,線段EF上的所有點(diǎn)均可以被點(diǎn)N半長捕獲,求n的取值范圍;
②若對于平面上的任意點(diǎn)(原點(diǎn)除外)都不能半長捕獲線段EF上的所有點(diǎn),直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰中,為中線,將線段繞點(diǎn)逆時針旋轉(zhuǎn);得到線段連接交直線于點(diǎn),連接.
(1)若,則 ;
(2)若是鈍角時,
①請?jiān)趫D2中依題意補(bǔ)全圖形,并標(biāo)出對應(yīng)字母;
②探究圖2中的形狀,并說明理由;
③若則 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,3).延長CB交x軸于點(diǎn)A1,作正方形A1B1C1C;延長C1B1交x軸于點(diǎn)A2,作正方形A2B2C2C1,…,按這樣的規(guī)律進(jìn)行下去,第2017個正方形的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)香洲區(qū)全面推進(jìn)書香校園建設(shè)的號召,班長小青隨機(jī)調(diào)查了若干同學(xué)一周課外閱讀的時間t(單位:小時),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計(jì)圖(A:0<t≤7,B:7<t≤14,C:14<t≤21,D:t>21),根據(jù)圖中信息,解答下列問題:
(1)這項(xiàng)工作中被調(diào)查的總?cè)藬?shù)是多少?
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求出表示A組的扇形統(tǒng)計(jì)圖的圓心角的度數(shù);
(3)如果小青想從D組的甲、乙、丙、丁四人中先后隨機(jī)選擇兩人做讀書心得發(fā)言代表,請用列表或樹狀圖的方法求出恰好選中甲的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過點(diǎn).
(1)當(dāng)時,若點(diǎn)在該二次函數(shù)的圖象上,求該二次函數(shù)的表達(dá)式;
(2)已知點(diǎn),在該二次函數(shù)的圖象上,求的取值范圍;
(3)當(dāng)時,若該二次函數(shù)的圖象與直線交于點(diǎn),,且,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊三角形,頂點(diǎn)在雙曲線上,點(diǎn)的坐標(biāo)為.過作交雙曲線于點(diǎn),過作交軸于點(diǎn),得到第二個等邊;過作交雙曲線于點(diǎn),過作交軸于點(diǎn),得到第三個等邊;以此類推,... 則點(diǎn)的坐標(biāo)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點(diǎn),∠ABD=2∠BAC,連接CD,過點(diǎn)C作CE⊥DB,垂足為E,直徑AB與CE的延長線相交于F點(diǎn).
(1)求證:CF是⊙O的切線;
(2)當(dāng)BD=,sinF=時,求OF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com