【題目】如圖,反比例函數(shù)(k≠0)的圖象經(jīng)過點A(1,2)和B(2,n),
(1)以原點O為位似中心畫出△A1B1O,使=;
(2)在y軸上是否存在點P,使得PA+PB的值最小?若存在,求出P的坐標;若不存在,請說明理由.
【答案】(1)作圖見解析;(2)存在,P(0,).
【解析】
(1)有兩種情形,分別畫出圖象即可;
(2)存在.如圖作點A關(guān)于y軸的對稱點A′,連接BA′交y軸于P,連接PA,此時PA+PB的值最小.求出直線BA′的解析式即可解決問題.
(1)△A1B1O的圖象如圖所示.
(2)存在.如圖作點A關(guān)于y軸的對稱點A′,連接BA′交y軸于P,連接PA,此時PA+PB的值最。
∵點A(1,2)在反比例函數(shù)y=上,
∴k=2,
∴B(2,1),
∵A′(﹣1,2),
設(shè)最小BA′的解析式為y=kx+b,則有 ,
解得 ,
∴直線BA′的解析式為y=﹣x+,
∴P(0,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點E,F(xiàn)在邊BC上,BE=CF,點D在AF的延長線上,AD=AC.
(1)求證:△ABE≌△ACF;
(2)若∠BAE=30°,則∠ADC= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小剛做游戲一個不透明的布袋里裝有4個大小、質(zhì)地均相同的乒乓球,球上分別標有數(shù)字1,2,3,4,隨機從布袋中摸出一個乒乓球,記下數(shù)字后放回布袋里,再隨機從布袋中摸出一個乒乓球,若這兩個乒乓球上的數(shù)字之和能被4整除則小明贏;若兩個乒乓球上的數(shù)字之和能被5整除則小剛贏;這個一個對游戲雙方公平的游戲嗎?請列表格或畫樹狀圖說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,為銳角,點為射線上一點,聯(lián)結(jié),以為一邊且在的右側(cè)作正方形.
(1)如果,,
①當(dāng)點在線段上時(與點不重合),如圖2,線段所在直線的位置關(guān)系為 ,線段的數(shù)量關(guān)系為 ;
②當(dāng)點在線段的延長線上時,如圖3,①中的結(jié)論是否仍然成立,并說明理由;
(2)如果,是銳角,點在線段上,當(dāng)滿足什么條件時,(點不重合),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC中點,兩邊PE、PF分別交AB、AC于點E、F,當(dāng)∠EPF在△ABC內(nèi)繞頂點P旋轉(zhuǎn)時(點E不與A、B重合),給出以下四個結(jié)論:①AE=CF;②△EPF是等腰直角三角形;③2S四邊形AEPF=S△ABC;④BE+CF=EF.上述結(jié)論中始終正確的有( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1、圖2中,點B為線段AE上一點,△ABC與△BED都是等邊三角形.
(1)如圖1,求證:AD=CE.
(2)如圖2,設(shè)CE與AD交于點F,連接BF.
①求證:∠CFA=60°.
②求證:CF+BF=AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABC=∠DEF,AB=DE,要證明△ABC≌△DEF,需要添加一個條件為_______(只添加一個條件即可);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公園門票的收費標準如下:
門票類別 | 成人票 | 兒童票 | 團體票(限5張及以上) |
價格(元/人) | 100 | 40 | 60 |
有兩個家庭分別去該公園游玩,每個家庭都有5名成員,且他們都選擇了最省錢的方案購買門票,結(jié)果一家比另一家少花40元,則花費較少的一家花了( )元.
A.300B.260C.240D.220
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com