【題目】如圖,反比例函數(shù)(k≠0)的圖象經(jīng)過點A(1,2)和B(2,n),

(1)以原點O為位似中心畫出△A1B1O,使=;

(2)y軸上是否存在點P,使得PA+PB的值最小?若存在,求出P的坐標;若不存在,請說明理由.

【答案】(1)作圖見解析;(2)存在,P(0,).

【解析】

(1)有兩種情形,分別畫出圖象即可;
(2)存在.如圖作點A關(guān)于y軸的對稱點A′,連接BA′交y軸于P,連接PA,此時PA+PB的值最小.求出直線BA′的解析式即可解決問題.

(1)△A1B1O的圖象如圖所示.

(2)存在.如圖作點A關(guān)于y軸的對稱點A′,連接BA′交y軸于P,連接PA,此時PA+PB的值最。

∵點A(1,2)在反比例函數(shù)y=上,

∴k=2,

∴B(2,1),

∵A′(﹣1,2),

設(shè)最小BA′的解析式為y=kx+b,則有 ,

解得

∴直線BA′的解析式為y=﹣x+,

∴P(0,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC,點E,F(xiàn)在邊BC上,BE=CF,點DAF的延長線上,AD=AC.

(1)求證:ABE≌△ACF;

(2)若∠BAE=30°,則∠ADC=   °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小剛做游戲一個不透明的布袋里裝有4個大小、質(zhì)地均相同的乒乓球,球上分別標有數(shù)字1,2,3,4,隨機從布袋中摸出一個乒乓球,記下數(shù)字后放回布袋里,再隨機從布袋中摸出一個乒乓球,若這兩個乒乓球上的數(shù)字之和能被4整除則小明贏;若兩個乒乓球上的數(shù)字之和能被5整除則小剛贏;這個一個對游戲雙方公平的游戲嗎?請列表格或畫樹狀圖說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,為銳角,點為射線上一點,聯(lián)結(jié),以為一邊且在的右側(cè)作正方形

(1)如果,

①當(dāng)點在線段上時(與點不重合),如圖2,線段所在直線的位置關(guān)系為 ,線段的數(shù)量關(guān)系為 ;

②當(dāng)點在線段的延長線上時,如圖3,①中的結(jié)論是否仍然成立,并說明理由;

(2)如果是銳角,點在線段上,當(dāng)滿足什么條件時,(點不重合),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點PBC中點,兩邊PE、PF分別交AB、AC于點E、F,當(dāng)∠EPF△ABC內(nèi)繞頂點P旋轉(zhuǎn)時(點E不與A、B重合),給出以下四個結(jié)論:①AE=CF;②△EPF是等腰直角三角形;③2S四邊形AEPF=SABC;④BE+CF=EF.上述結(jié)論中始終正確的有( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1、圖2中,點B為線段AE上一點,△ABC與△BED都是等邊三角形.

(1)如圖1,求證:AD=CE.

(2)如圖2,設(shè)CEAD交于點F,連接BF.

①求證:∠CFA=60°.

②求證:CF+BF=AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABC=∠DEF,AB=DE,要證明△ABC≌△DEF,需要添加一個條件為_______(只添加一個條件即可);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖, ABCD于點O,∠1=2OE平分∠BOF,∠EOB=55°,求∠GOF和∠DOG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公園門票的收費標準如下:

門票類別

成人票

兒童票

團體票(限5張及以上)

價格(元/人)

100

40

60

有兩個家庭分別去該公園游玩,每個家庭都有5名成員,且他們都選擇了最省錢的方案購買門票,結(jié)果一家比另一家少花40元,則花費較少的一家花了( )元.

A.300B.260C.240D.220

查看答案和解析>>

同步練習(xí)冊答案