【題目】如圖,點(diǎn)是邊長(zhǎng)為的正方形的對(duì)角線上的動(dòng)點(diǎn),過(guò)點(diǎn)分別作于點(diǎn)于點(diǎn),連接并延長(zhǎng),交射線于點(diǎn)交射線于點(diǎn),連接交于點(diǎn)當(dāng)點(diǎn)在上運(yùn)動(dòng)時(shí)(不包括兩點(diǎn)),以下結(jié)論:①;②;③;④的最小值是.其中正確的是_______.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)
【答案】②③④
【解析】
根據(jù)正方形的性質(zhì)、相似三角形的判定與性質(zhì)、矩形的判定與性質(zhì),對(duì)選項(xiàng)進(jìn)行判斷即可.
解:①錯(cuò)誤.因?yàn)楫?dāng)點(diǎn)P與BD中點(diǎn)重合時(shí),CM=0,顯然FM≠CM;
②正確.連接PC交EF于O.根據(jù)對(duì)稱性可知∠DAP=∠DCP,
∵四邊形PECF是矩形,
∴OF=OC,
∴∠OCF=∠OFC,
∴∠OFC=∠DAP,
∵∠DAP+∠AMD=90°,
∴∠GFM+∠AMD=90°,
∴∠FGM=90°,
∴AH⊥EF.
③正確.∵AD∥BH,
∴∠DAP=∠H,
∵∠DAP=∠PCM,
∴∠PCM=∠H,
∵∠CPM=∠HPC,
∴△CPM∽△HPC,
∴PCHP=PMPCPCHP=PMPC,
∴PC2=PMPH,
根據(jù)對(duì)稱性可知:PA=PC,
∴PA2=PMPH.
④正確.∵四邊形PECF是矩形,
∴EF=PC,
∴當(dāng)CP⊥BD時(shí),PC的值最小,此時(shí)A、P、C共線,
∵AC=2,
∴PC的最小值為,
∴EF的最小值為;
故答案為:②③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)于點(diǎn)和點(diǎn)給出如下定義:若,則稱點(diǎn)為點(diǎn)的絕對(duì)點(diǎn).例如:點(diǎn)的絕對(duì)點(diǎn)坐標(biāo)是,點(diǎn)的絕對(duì)點(diǎn)坐標(biāo)是.
(1)點(diǎn)的絕對(duì)點(diǎn)坐標(biāo)是_______.
(2)若點(diǎn)在函數(shù)的圖像上,其絕對(duì)點(diǎn)的縱坐標(biāo)的取值范圍為,求的取值范圍;
(3)若點(diǎn)在關(guān)于的二次函數(shù)圖像上,其絕對(duì)點(diǎn)的縱坐標(biāo)的取值范圍是或,其中,令,是否存在使得有最大值,若有請(qǐng)求出的最大值及此時(shí)的值;若無(wú),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知拋物線C1:與x軸的正半軸交于點(diǎn)A,點(diǎn)B為拋物線的頂點(diǎn),直線l:是一條動(dòng)直線.
(1)求點(diǎn)A、點(diǎn)B的坐標(biāo);
(2)當(dāng)直線l經(jīng)過(guò)點(diǎn)A時(shí),求出直線l的解析式,并直接寫出此時(shí)當(dāng)時(shí),自變量x的取值范圍;
(3)如圖2,將拋物線C1在x軸上方的部分沿x軸翻折,與C1在x軸下方的圖形組合成一個(gè)新的圖形C2,當(dāng)直線l與組合圖形C2有且只有兩個(gè)交點(diǎn)時(shí),直接寫出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在∠DAM內(nèi)部做Rt△ABC,AB平分∠DAM,∠ACB=90°,AB=10,AC=8,點(diǎn)N為BC的中點(diǎn),動(dòng)點(diǎn)E由A點(diǎn)出發(fā),沿AB運(yùn)動(dòng),速度為每秒5個(gè)單位,動(dòng)點(diǎn)F由A點(diǎn)出發(fā),沿AM運(yùn)動(dòng),速度為每秒8個(gè)單位,當(dāng)點(diǎn)E到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),過(guò)A、E、F作⊙O.
(1)判斷△AEF的形狀為 ,并判斷AD與⊙O的位置關(guān)系為 ;
(2)求t為何值時(shí),EN與⊙O相切,求出此時(shí)⊙O的半徑,并比較半徑與劣弧長(zhǎng)度的大;
(3)直接寫出△AEF的內(nèi)心運(yùn)動(dòng)的路徑長(zhǎng)為 ;(注:當(dāng)A、E、F重合時(shí),內(nèi)心就是A點(diǎn))
(4)直接寫出線段EN與⊙O有兩個(gè)公共點(diǎn)時(shí),t的取值范圍為 .
(參考數(shù)據(jù):sin37°=,tan37°=,tan74°≈,sin74°≈,cos74°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三角形ABC中,AB=10,AC=BC=13,以BC為直徑作⊙O交AB于點(diǎn)D,交AC于點(diǎn)G,直線DF⊥AC,于點(diǎn)F,交CB的延長(zhǎng)線于點(diǎn)E.
(1)求證:DF是⊙O的切線;
(2)求cos∠ADF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中點(diǎn)分別在邊、邊上,連接點(diǎn)、點(diǎn)在直線同側(cè),連接且.
(1)點(diǎn)與點(diǎn)重合時(shí),
①如圖1,時(shí),和的數(shù)量關(guān)系是 ;位置關(guān)系是 ;
②如圖2,時(shí),猜想和的關(guān)系,并說(shuō)明理由;
(2)時(shí),
③如圖3,時(shí),若求的長(zhǎng)度;
④如圖4,時(shí),點(diǎn)分別為和的中點(diǎn),若,直接寫出的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果拋物線m的頂點(diǎn)在拋物線n上,同時(shí)拋物線n的頂點(diǎn)在拋物線m上,那么我們就稱拋物線m與n為交融拋物線.
(1)已知拋物線a:,判斷下列拋物線b:,c:與已知拋物線a是否為交融拋物線?并說(shuō)明理由;
(2)在直線y=2上有一動(dòng)點(diǎn)P(t,2),將拋物線a:繞點(diǎn)P(t,2)旋轉(zhuǎn)180得到拋物線l,若拋物線a與l為交融拋物線,求拋物線l的解析式;
(3)M為拋物線a:的頂點(diǎn),Q為拋物線a的交融拋物線的頂點(diǎn),是否存在以MQ為斜邊的等腰直角三角形MQS,使直角頂點(diǎn)S在y軸上?若存在,求出點(diǎn)S的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)舉辦抽獎(jiǎng)活動(dòng),規(guī)則如下:在不透明的袋子中有2個(gè)紅球和2個(gè)黑球,這些球除顏色外都相同,顧客每次摸出一個(gè)球,若摸到紅球,則獲得1份獎(jiǎng)品,若摸到黑球,則沒有獎(jiǎng)品。
(1)如果小芳只有一次摸球機(jī)會(huì),那么小芳獲得獎(jiǎng)品的概率為 ;
(2)如果小芳有兩次摸球機(jī)會(huì)(摸出后不放回),求小芳獲得2份獎(jiǎng)品的概率。(請(qǐng)用“畫樹狀圖”或“列表”等方法寫出分析過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《小豬佩奇》這部動(dòng)畫片,估計(jì)同學(xué)們都非常喜歡.周末,小豬佩奇一家4口人(小豬佩奇,小豬喬治,小豬媽媽,小豬爸爸)到一家餐廳就餐,包廂有一圓桌,旁邊有四個(gè)座位(,,,).
(1)小豬佩奇隨機(jī)坐到座位的概率是________;
(2)若現(xiàn)在由小豬佩奇,小豬喬治兩人先后選座位,用樹狀圖或列表的方法計(jì)算出小豬佩奇和小豬喬治坐對(duì)面的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com