【題目】如圖,在△ABC中,∠ACB=90°,∠CAB=30°.以AB長為一邊作△ABD,且AD=BD,∠ADB=90°,取AB中點(diǎn)E,連DE、CE、CD.則∠EDC是多少度.
【答案】75°
【解析】
根據(jù)在直角三角形中,斜邊上的中線等于斜邊的一半得到EC=EA=EB=AB,根據(jù)三角形的外角的性質(zhì)求出∠CEB=60°,根據(jù)直角三角形的性質(zhì)得到ED=EC,根據(jù)三角形內(nèi)角和定理計(jì)算即可.
∵∠ACB=90°,點(diǎn)E是AB中點(diǎn),
∴EC=EA=EB=AB,
∴∠ECA=∠CAB=30°,
∴∠CEB=60°,
∵AD=BD,點(diǎn)E是AB中點(diǎn),
∴DE⊥AB,即∠AED=90°,
∴∠DEC=180°﹣90°﹣60°=30°,
∵∠ADB=90°,點(diǎn)E是AB中點(diǎn),
∴DE=AB,
∴ED=EC,
∴∠EDC=75°,
故答案為:75°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),平面直角坐標(biāo)系中,點(diǎn)A、B分別在x、y軸上,點(diǎn)B的坐標(biāo)為(0,1),∠BAO=30°.
(1)求AB的長度;
(2)以AB為一邊作等邊△ABE,作OA的垂直平分線MN交AB的垂線AD于點(diǎn),求證:BD=OE;
(3)在(2)的條件下,連接DE交AB于F,求證:F為DE的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,,,,,,動點(diǎn)M從點(diǎn)B出發(fā)沿線段BC以每秒2個單位長度的速度向終點(diǎn)C運(yùn)動,動點(diǎn)N同時從點(diǎn)C出發(fā)沿線段CD以每秒1個單位長度的速度向終點(diǎn)D運(yùn)動.
設(shè)運(yùn)動的時間為t秒.
求BC的長.
當(dāng)時,求t的值.
設(shè)的面積為,試確定與t的函數(shù)關(guān)系式.
在運(yùn)動過程中,是否存在某一時刻t,使::65?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,動點(diǎn)E,F分別從D,C兩點(diǎn)同時出發(fā),以相同的速度在直線DC,CB上移動.
(1)如圖1,當(dāng)點(diǎn)E在邊DC上自D向C移動,同時點(diǎn)F在邊CB上自C向B移動時,連接AE和DF交于點(diǎn)P,請你寫出AE與DF的數(shù)量關(guān)系和位置關(guān)系,并說明理;
(2)如圖2,當(dāng)E,F分別在邊CD,BC的延長線上移動時,連接AE,DF,(1)中的結(jié)論還成立嗎?(請你直接回答“是”或“否”,不需證明);連接AC,求△ACE為等腰三角形時CE:CD的值;
(3)如圖3,當(dāng)E,F分別在直線DC,CB上移動時,連接AE和DF交于點(diǎn)P,由于點(diǎn)E,F的移動,使得點(diǎn)P也隨之運(yùn)動,請你畫出點(diǎn)P運(yùn)動路徑的草圖.若AD=2,試求出線段CP的最大值.
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=12cm,BC=24cm,如果將該矩形沿對角線BD折疊,那么圖中陰影部分的面積( )cm2.
A.72 B.90 C.108 D.144
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AO⊥OM,OA=8,點(diǎn)B為射線OM上的一個動點(diǎn),分別以OB,AB為直角邊,B為直角頂點(diǎn),在OM兩側(cè)作等腰Rt△OBF、等腰Rt△ABE,連接EF交OM于P點(diǎn),當(dāng)點(diǎn)B在射線OM上移動時,PB的長度為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P、Q分別是邊長為4cm的等邊△ABC邊AB、BC上的動點(diǎn)(端點(diǎn)除外),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時出發(fā),且它們的速度都為1cm/s,連接AQ、CP交于點(diǎn)M,則在P、Q運(yùn)動的過程中,
(1)求證:△ABQ ≌ △CAP;
(2)∠CMQ的大小變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù);
(3)連接PQ,當(dāng)點(diǎn)P,Q運(yùn)動多少秒時,△PBQ是直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店以每千克4元的價格購進(jìn)一批水果,由于銷售狀況良好,該店又購進(jìn)同一種水果,第二次進(jìn)貨價格比第一次每千克便宜了0.5元,所購水果重量恰好是第一次購進(jìn)水果重量的2倍,這樣該水果店兩次購進(jìn)水果共花去了2200元.
(1)該水果店兩次分別購買了多少元的水果?
(2)在銷售中,盡管兩次進(jìn)貨的價格不同,但水果店仍以相同的價格售出,若第一次購進(jìn)的水果有3%的損耗,第二次購進(jìn)的水果有5%的損耗,該水果店希望售完這些水果獲利不低于1244元,則該水果每千克售價至少為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com