【題目】如圖,拋物線()交直線:于點,點兩點,且過點,連接,.
(1)求此拋物線的表達式與頂點坐標;
(2)點是第四象限內(nèi)拋物線上的一個動點,過點作軸,垂足為點,交于點.設(shè)點的橫坐標為,試探究點在運動過程中,是否存在這樣的點,使得以,,為頂點的三角形是等腰三角形.若存在,請求出此時點的坐標,若不存在,請說明理由;
(3)若點在軸上,點在拋物線上,是否存在以點,,,為頂點的平行四邊形?若存在,求點的坐標;若不存在,請說明理由.
【答案】(1)頂點坐標為;(2)存在, ,;(3)或或.
【解析】
(1)根據(jù)一次函數(shù)解析式求出A、C兩點的坐標,把A、B、C三點代入解析式求解即可求的解析式,然后把解析式化為頂點式可求得結(jié)果.
(2)先求出BC所在直線的解析式,設(shè)出P、Q兩點的坐標,根據(jù)勾股定理求出AC,根據(jù)以,,為頂點的三角形是等腰三角形可分類討論,分為AQ=AC,AC=CQ,AQ=CQ三種情況.
(3)分兩種情況討論,一是F在拋物線上方,過點作軸,可得FH=4,設(shè),可得,求出n代入即可;二是F在拋物線下方,可得,求出n的值即可,最后的結(jié)果綜合兩個結(jié)果即可.
解:(1)
∵當時,,
∴;
∴,;
二次函數(shù)過點、,設(shè);
∵過點,
∴;
∴;
∴
;
∵,
∴頂點坐標為.
(2)存在.
設(shè)過、,
;
設(shè)解得:;
∴;
設(shè)、;
在中,解得;
①當時;
;
解得:(不合題意舍去),;
∴;
②當時;
;
解得:,(不合題意舍去);
∴;
③當時;
;
解得:(不合題意舍去);
∴,;
(3)當在拋物線上方時,,時;
過點作軸,與全等;
則;
設(shè);
則;
解得;,;
或;
當在拋物線下方時,;
(不合題意舍去),;
∴;
∴或或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與拋物線交軸于點,交軸于點,拋物線交軸的另一個交點為點(點的左邊).點為拋物線上一個動點(且點的橫坐標滿足,過點作軸交于點.
(1)求該拋物線的解析式;
(2)若為直角三角形,求點的坐標;
(3)在(2)的結(jié)論下,點為拋物線上任意一個動點,點為軸上一個動點,則以,,,四點為頂點的四邊形能否為平行四邊形,若能,請直接寫出點的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】疫情期間,甲廠欲購買某種無紡布生產(chǎn)口罩,A、B兩家無紡布公司各自給出了該種無紡布的銷售方案.
A公司方案:無紡布的價格均為每噸1.95萬元;
B公司方案:無紡布不超過30噸時,每噸收費2萬元;超過30噸時,超過的部分每噸收費1.9萬元.
設(shè)甲廠在同一公司一次購買無紡布的數(shù)量為x噸(x>0).
(Ⅰ)根據(jù)題意,填寫下表:
一次購買數(shù)量(噸) | 10 | 20 | 35 | … |
A公司花費(萬元) | 39 | … | ||
B公司花費(萬元) | 40 | … |
(Ⅱ) 設(shè)在A公司花費萬元,在B公司花費萬元,分別求、關(guān)于x的函數(shù)解析式;
(Ⅲ)如果甲廠所需購買的無紡布是50噸,試通過計算說明選擇哪家公司費用較少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某服裝公司有型童裝80件,型童裝120件,分配給下屬的“萬達”和“萬象城”兩個專賣店銷售,其中140件給萬達店,60件給萬象城店,且都能賣完,兩商店銷售這兩種童裝每件的利潤(元)如表:
型利潤(元) | 型利潤(元) | |
萬達店 | 100 | 80 |
萬象城店 | 80 | 90 |
(1)設(shè)分配給萬達店型產(chǎn)品件(),請在下表中用含的代數(shù)式填寫:
型分配量(件) | 型分配量(件) | |
萬達店 | ______ | |
萬象城店 | ______ | ______ |
若記這家服裝公司賣出這200件產(chǎn)品的總利潤為(元),求關(guān)于的函數(shù)關(guān)系.
(2)現(xiàn)要求總利潤不低于18140元,請說明有多少種不同分配方案,并寫出各種分配方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,,,點、分別在邊和上,沿折疊四邊形,使點、分別落在、處,得四邊形,點在上,過點作于點,連接,則下列結(jié)論:①;②;
③;④若點是的中點,則,其中,正確結(jié)論的序號是_______.(把所有正確結(jié)論的序號都在填在橫線上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在由邊長都為1的小正方形組成的網(wǎng)格中,點,,均為格點,,,,為中點,為上的一個動點.
(1)當點為線段中點時,的長度等于__________;
(2)將點繞點逆時針旋轉(zhuǎn)90°得到點,連,當線段取得最小值時,請借助無刻度直尺在給定的網(wǎng)格中畫出點,點,并簡要說明你是怎么畫出點,點的:____________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線與x軸、y軸分別交于A、B兩點,P是以C(0,1)為圓心,1為半徑的圓上一動點,連結(jié)PA、PB.則△PAB面積的最大值是( )
A.8B.12C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+mx+4m與x軸交于點A(,0)和點B(,0),與y軸交于點C,,若對稱軸在y軸的右側(cè).
(1)求拋物線的解析式
(2)在拋物線的對稱軸上取一點M,使|MC-MB|的值最大;
(3)點Q是拋物線上任意一點,過點Q作PQ⊥x軸交直線BC于點P,連接CQ,當△CPQ是等腰三角形時,求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com